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ABSTRACT 

Numerous optimization problems in production systems can be considered as decision-making 

processes that determine the best allocation of resources to tasks over time to optimize one or more 

objectives in concert with big data. Among the optimization problems, production scheduling and 

routing of robots for material handling are becoming more important due to their impacts on 

system performance. However, the development of efficient algorithms for scheduling or routing 

faces several challenges. While the scheduling and vehicle routing problems can be solved by 

mathematical models such as mixed-integer linear programming to find optimal solutions to small-

sized problems, they are not applicable to larger problems due to the nature of NP-hard problems. 

Thus, further research on machine learning applications to those problems is a significant step 

towards increasing the possibilities and potentialities of field application. In order to create truly 

intelligent systems, new frameworks for scheduling and routing are proposed to utilize machine 

learning (ML) techniques. First, the dynamic single-machine scheduling problem for minimization 

of total weighted tardiness is addressed. In order to solve the problem more efficiently, a decision-

tree-based approach called Generation of Rules Automatically with Feature construction and Tree-

based learning (GRAFT) is designed to extract dispatching rules from existing or good schedules. 

In addition to the single-machine scheduling problem, the flexible job-shop scheduling problem 

with release times for minimizing the total weighted tardiness is analyzed. As a ML-based solution 

approach, a random-forest-based approach called Random Forest for Obtaining Rules for 

Scheduling (RANFORS) is developed to solve the problem by generating dispatching rules 

automatically. Finally, an optimization problem for routing of autonomous robots for minimizing 

total tardiness of transportation requests is analyzed by decomposing it into three sub-problems. 

In order to solve the sub-problems, a comprehensive framework with consideration of conflicts 

between routes is proposed. Especially to the sub-problem for vehicle routing, a new local search 

algorithm called COntextual-Bandit-based Adaptive Local search with Tree-based regression 

(COBALT) that incorporates the contextual bandit into operator selection is developed. The 

findings from my research contribute to suggesting a guidance to practitioners for the applications 

of ML to scheduling and control problems, and ultimately to lead the implementation of smart 

factories.  
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CHAPTER 1. INTRODUCTION 

The application of the word ‘smart’ has been extended from electronic devices to various other 

systems especially due to the rapid development of Internet of Things (IoT). The basic concept of 

IoT is that data from machines, sensors, people, and more are stored through networks and 

integrated into smart systems to make better decisions. In recent years, the concept of smart 

factories and Industry 4.0 with IoT and wireless sensor network have been widely spread to 

optimize various operations in a factory.  

Especially, beyond traditional automation, smart factories connect all machines to be more 

intelligent and flexible systems by learning and adapting to changes from the shop floor. In 

addition, autonomous robots for material handling in factories are growing quickly and even small 

and medium-sized factories also can take more advantages of robots due to their flexibility. The 

convergence of wireless sensor network and big data with machine learning is accelerating the 

adoption of these technologies and providing numerous business opportunities in manufacturing 

environments. 

On the other hand, manufacturing systems also face a variety of new optimization problems, 

which can be expressed as decision-making processes that determine the best allocation of 

resources to tasks over time in order to optimize one or more objectives. These problems cause 

new challenges compared to traditional optimization problems. 

The first challenge is the tremendous size of data. Sensors, machines and a wide range of 

devices generate massive amounts of structured and unstructured data, which require a new 

approach to capture underlying knowledge. However, manufacturing environments are often too 

complex to consider all important attributes because the requisite information comes from multiple 

sources and sensors and much of the underlying logics of the operation might be implicit and 

challenging to capture intuitively. 

Another challenge is a set of new constraints for manufacturing systems. It is crucial to identify 

various constraints such as the limited battery life and consider them in a solution approach. For 

example, in scheduling problems, a traditional job shop scheduling problem rarely exists. In 

practice, there might be a variety of machines with different abilities placed in parallel at stages to 

increase capacity and balance the workload. 
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The last challenge is the computational complexity. Although exact approaches such as a 

mixed-integer linear programming and dynamic programming can find an optimal solution, they 

are often impractical because of the extremely long calculation time for large problems. In case of 

heuristics, nature-inspired algorithms such as genetic algorithm can be applied to more complex 

problems, but the execution time and solution quality vary with the design of the algorithm. The 

following subchapters describe the detailed characteristics for two major problems in 

manufacturing systems: production scheduling and vehicle routing problems. 

 Production Scheduling 

According to the characteristics of manufacturing systems, production scheduling problems can 

be formulated from the simple problem (single machine) to the highly complicated one (parallel 

machines for each process). Single-machine scheduling problems (SMSPs) have been extensively 

studied due to their applicability in various manufacturing environments and impact on factory-

floor performance. Moreover, in line with the trends toward mass-customization and customer-

focused manufacturing, consideration of due dates, job priorities, and dynamic arrivals is necessary 

in order to meet the demands of customers in a timely manner. An example of a single-machine 

scheduling problem with due dates, arrival times, and weights is the testing process of wafers in 

semiconductors (Chou et al. 2005). 

Furthermore, in order to increase productivity and flexibility, many factories have one or more 

alternative machines or workers for each process. The traditional job shop scheduling problem 

(JSP) is not suitable for such production environments because some processes need to employ 

parallel machines. This type of problem can be defined as a flexible job shop scheduling problem 

(FJSP) as shown in Figure 1.1 (Pinedo 2012). In the figure, 𝑂𝑖  represents the ordered set of 

operations of job 𝑖  and 𝑀𝑗  means the set of alternative machines on which operation 𝑗 can be 

processed. Also, 𝑡𝑖𝑗𝑘 presents the processing time of operation 𝑗 of job 𝑖 on machine 𝑘. 
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Figure 1.1 Summary of Flexible Job Shop Scheduling 

 

 Logistics with Autonomous Robots 

 

Table 1.1 Comparison between AGVs and AMRs 

 AGV AMR 

Paths Fixed Flexible 

Frequency of finding paths 
Sporadic (when installing 

lanes) 

Frequent (when changes 

occur) 

Conflict resolution by 

detouring 
Not available Available 

Conflict resolution system 
Centralized traffic control 

system 

Decentralized collision 

detection and resolution by 

sensors 

Additional features 

Inductive power transfer, 

automatic battery replacement 

system 

Data collection, shelf or cart 

attachment, robot arms for 

self-fulfillment 
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Traditionally, automated guided vehicles (AGVs) have been widely used in various fields related 

to material handling such as manufacturing and warehouse management. A major disadvantage of 

AGVs is that the route between two locations is fixed and there is less flexibility for changing of 

routes due to the fact that AGVs are guided by tape, wire, and magnetic tracks. Additionally, due 

to their high investment costs, AGVs have been used mainly in high-volume manufacturing 

operations. However, unlike AGVs, automated mobile robots (AMRs) can move freely without 

any sort of guidance such as tape or wire by using embedded sensors (e.g. light detection and 

ranging, cameras). While AGVs currently have a huge role in production logistics, their utilization 

in material handling is growing quickly as more and more manufacturers consider semi-

autonomous or fully autonomous vehicles offering scalability and versatility as well as lower costs. 

The major differences between AGVs and AMRs are summarized in Table 1.1. 

As shown in the above table, AMRs have a wide array of advantages compared with traditional 

AGVs. First, due to their autonomous ability, AMRs can easily avoid collisions and resolve 

conflicts between vehicles in a decentralized way. Also, with attachment of additional modules 

such as robot arms, AMRs can be widely used to perform additional tasks during transportation. 

Based on these great potentials, even small- and medium-sized factories can take advantage of 

AMRs as compared with expensive AGVs with their high investment cost and low versatility 

(Material Handling Institute 2018). 

The major problem for AMRs is to identify a set of optimal routes, with consideration of 

conflicts, whereby a fleet of vehicles can serve given transportation requests. This problem can be 

categorized into three sub-problems: path finding (PF), vehicle routing (VR), and conflict 

resolution (CR). The goal of the path finding problem is to find the shortest path between two 

locations. In the case of the vehicle routing problem, the objective is to determine the best 

allocation of pickup and delivery operations with consideration of the paths calculated in the path 

finding problem. Finally, in terms of conflict resolution, the main purpose is to minimize collisions 

or delays based on the vehicle routing and path finding solutions. 

 Research Problems and Contributions 

Whereas the scheduling problems such as SMSP and FJSP can be solved by mathematical models 

such as mixed-integer linear programming (MILP) to find optimal solutions to small-sized 

problems, they are not applicable to practical (larger) problems, due to the nature of NP-hard 
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problems for which they are scaled up, and the computational time incurred consequently. 

Furthermore, much of the underlying logistics of actual operations are implicit and challenging to 

capture intuitively, because smart systems are often too complex to understand all important 

attributes, due especially to the massive data from multiple sources and sensors that they have to 

handle. 

In the case of logistics with AMRs in factories, many hurdles such as the computational 

complexity of three sub-problems must be cleared in order to make the best use of AMRs. All of 

these sub-problems are not independent, but rather are closely related to each other. For example, 

in order to find the best path of an AMR, the required distance between two locations as well as 

the routes of the other vehicles must be considered. Also, the expected delivery time largely 

depends on delays caused by conflicts between AMRs.  

These interdependencies among the sub-problems render AMR optimization problems more 

complicated. First of all, finding the shortest paths and routing AMRs based on them are NP-hard. 

This implies that, in the worst case, most algorithms will likely have great difficulties finding the 

optimal solution within a reasonable time. Also, even if the optimal schedule of AMRs with 

shortest paths are known, there are possibilities for situations in which two or more AMRs 

encounter each other in the same grid, which cause unnecessary delays and affect schedule 

performance thereby. 

Thus, there is a significant need for research that can help systems make better decisions in 

extracting underlying decisions while considering various environments. Due particularly to the 

recent development of machine learning (ML) techniques, huge volumes of data can be transmitted 

through wireless networks to make systems more intelligent, understand complex decisions, and 

optimize them.  

In order to utilize a tremendous amount of data, this dissertation aims at: 1) discovering both 

explicit and implicit knowledge from existing schedules and 2) proposing a comprehensive 

framework for AMRs. The contributions of this dissertation are: 

 Development of an understandable ML method to extract both explicit and implicit 

knowledge as a set of rules from good schedules 

 Improvement of decision-tree-based models with discretization and feature extraction by 

using the evolutionary process 
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 Implementation of a comprehensive framework for controlling AMRs efficiently with 

consideration of conflicts between routes 

 Integration of reinforcement learning and local search selection in vehicle routing 

 Development of an agent-based model with distributed decision-making for conflict 

resolution 

 Organization of Dissertation 

The remaining chapters of this dissertation are organized as following sequences. In Chapter 2, the 

previous literature relevant to production scheduling and logistics is reviewed. Chapter 3 presents 

for the SMSP for minimization of total weighted tardiness by learning of dispatching rules (DRs) 

from schedules. In addition to the SMSP, the more complicated problem, FJSP, and an automated 

approach for discovering DRs are presented in Chapter 4. In Chapter 5, a new framework for 

controlling AMRs in production logistics is proposed. Finally, Chapter 6 concludes this 

dissertation and summarizes the plan for further research directions. 
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CHAPTER 2. LITERATURE REVIEW 

In this chapter, the previous literature is reviewed in three categories: single-machine scheduling 

problem (SMSP), flexible job shop scheduling problem (FJSP), and control of material handling 

vehicles. Each of the sub-chapters is related to the research problem to be addressed in this 

dissertation. 

 Single-Machine Scheduling Problem (SMSP) 

Single-machine scheduling problems (SMSPs) can be categorized into two types, offline and 

online (Pinedo 2012). In offline SMSPs, all information about jobs to be processed such as the 

number of jobs, processing times and release dates are known at the beginning. In contrast, in 

online SMSPs, the problem data are not known a priori and the detailed attributes of a given job 

are identified only once the job is released.  

In terms of the objective functions, in a more customer-oriented and highly competitive 

environment, tardiness-related objective functions are becoming more and more crucial with 

respect to overall customer satisfaction. Moreover, the weight of an individual job is often used to 

determine the priorities of customer orders in production scheduling. However, most single-

machine scheduling problems with dynamic arrivals, weight, and tardiness-related objective 

functions have been shown to be NP-hard. Lawler (1977) showed that 1|| ∑ 𝑤𝑗𝑇𝑗 is strongly NP-

hard, which implies that 1|𝑟𝑗| ∑ 𝑤𝑗𝑇𝑗 is also strongly NP-hard. 

Traditionally, exact approaches such as branch-and-bound algorithms and dynamic 

programming have been used for SSMSPs to produce optimal solutions. Akturk and Ozdemir 

(2000) proposed a branch-and-bound algorithm with dominance properties for 1|𝑟𝑗| ∑ 𝑤𝑗𝑇𝑗. In the 

case of online SMSPs, Liu et al. (2009) showed that there is no online algorithm with a finite 

competitive ratio for an online version of 1|𝑟𝑗| ∑ 𝑤𝑗𝑇𝑗 with ∑ 𝑤𝑗𝑇𝑗 > 0. The competitive ratio of 

an algorithm is defined as the 𝜌 value where the objective function value of a schedule obtained 

from the algorithm is no more than 𝜌 times and no smaller value of 𝜌 can be established for this 

algorithm (Anderson and Potts 2004). 

However, although exact approaches can guarantee optimality, they are inapplicable to large 

or complex problems, due to their extremely long computation time. To deal with these issues 
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more practically, heuristic algorithms also have been used to find the optimal or near-optimal 

schedule in a reasonable time. The heuristic algorithms can be classified into two types: 

constructive and improvement. 

DRs, notably, which are a type of constructive heuristics, have been actively researched for 

the past several decades owing to their computational efficiency, ease of implementation, and 

utility for producing good solutions for specific problems. DRs based on the priority function; the 

job with the highest priority value is selected from a list of jobs and assigned to a machine every 

time the machine completes a job. When calculating the priorities of jobs, multiple attributes can 

be combined as a “composite” attribute for improved performance (Jayamohan and Rajendran 

2004). 

In order to find the best priority function for DRs automatically, genetic programming (GP) 

has been widely used to synthesize raw attributes into a combined priority function. Jakobović and 

Budin (2006) proposed a GP-based approach for a dynamic SMSP with minimization of the total 

weighted tardiness. The role of GP is to find the most suitable priority function by using widely 

used criteria such as slack, number of remaining jobs, and waiting times. Recent applications of 

GP have utilized the relationships among more problem-specific attributes, such as the difference 

between operation’s due dates, that are relevant to scheduling decisions (Zhou et al. 2019). 

In the case of other types of constructive heuristics, Chand et al. (1997) introduced rolling 

horizon procedures (RHP) for 1|𝑟𝑗| ∑ 𝐶𝑗, which is a dynamic scheduling problem decomposed into 

a series of smaller sub-problems of the same type. The RHP provides a compromise between exact 

solution methods and myopic DRs by changing the degree of forward visibility. The computational 

results showed that RHP is better than DRs in some cases and worse in other cases because the 

impact of the local objectives on the global one can be ignored (Wang et al. 2005). Chou et al. 

(2005) also proposed a heuristic algorithm, this one with two phases, that uses a rolling horizon 

and non-delay concept; this means that machine idleness needs to be avoided on the shop floor 

and that machines will keep running as long as there is work in process (WIP) in queue. 

Unlike constructive heuristics, improvement heuristics start from a given set of initial solutions 

and exploit the iterative improvement. Congram et al. (2002) introduced a new neighborhood 

search technique for 1|| ∑ 𝑤𝑗𝑇𝑗  that uses dynamic programming to search an exponential-sized 

neighborhood in polynomial time. Holthaus and Rajendran (2005) proposed a fast ant-colony 

optimization (ACO) algorithm for 1|| ∑ 𝑤𝑗𝑇𝑗  based on the use of pheromone trails laid as a 
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medium for communication and feedback among ants. Cakar and Koker (2015) proposed a neuro-

hybrid system based on particle swarm optimization (PSO) that improves the obtained solution by 

using genetic algorithm (GA) and simulated annealing (SA) together as a hybrid system to solve 

1|𝑟𝑗| ∑ 𝑤𝑗𝑇𝑗. 

 Flexible Job Shop Scheduling Problem (FJSP) 

An FJSP can be divided into two sub-problems, a routing problem and a sequencing problem. The 

objective of the routing problem is to assign each operation to an alternative machine and can be 

considered as a parallel machine problem. The sequencing problem is for sequencing assigned 

operations to machines and is equivalent to the classical job shop scheduling problem. These two 

sub-problems have been shown to be NP-hard (Garey, Johnson, and Sethi 1976). 

Exact approaches based on mathematical modelling have been used to ensure better 

performance than other heuristic methods in terms of finding optimal solutions to small- and 

moderate-sized FJSPs. Fattahi, Mehrabad, and Jolai (2007) used a sequence-position variable-

based model to formulate an FJSP. Özgüven, Özbakır, and Yavuz (2010) developed a MILP model 

to solve FJSPs by using precedence variables. Demir and İşleyen (2013) examined the 

performances of mathematical models and showed that the MILP model with precedence variables 

has the least computation time for almost all optimally solved test problems. 

However, although exact approaches based on mathematical modelling have been developed, 

they are inapplicable to large or complex problems. To deal with FJSPs more practically, various 

dispatching rules (DRs) have been proposed. In general, DRs can be distinguished by their input 

attributes, such as due dates and processing times, and various attributes of jobs are often combined 

in practice (Bergmann et al. 2015). To determine which job precedes others, additional attributes 

such as slack time can be constructed as input data so that DRs can produce more efficient 

schedules.  

Heuristic algorithms also have been used to find the optimal or near-optimal schedule in a 

reasonable time. Brandimarte (1993) proposed a hierarchical algorithm based on tabu search for 

FJSPs, where an initial population is generated by using DRs (SPT, EDD, MWRT, ATC, etc.) with 

fixed routing decisions. Yazdani, Amiri, and Zandieh (2010) proposed a parallel variable 

neighborhood search (PVNS) algorithm for an FJSP with the objective of minimizing the 

makespan. The parallelization in this algorithm can enhance the exploration of the search space. 
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Of the various meta-heuristic algorithms, GAs are considered successful in dealing with FJSPs, as 

reflected by the growing number of related studies (Çaliş and Bulkan 2015). 

Constraint programming (CP) is another problem-solving paradigm that has been widely 

applied to scheduling, especially flexible and extensible scheduling systems. A key idea of CP is 

that constraints can be used to reduce the computation time required to solve FJSPs. In CP, 

constraints are used to check for validity and inconsistencies, remove values from the domains, 

and deduce new constraints (Baptiste, Le Pape, and Nuijten 2012). Ham and Cakici (2016) tested 

three MILP models and their CP model to minimize the makespan of an FJSP with parallel batch 

processing machines; in the results, the proposed CP outperformed all three MIP models. 

 Control of Material Handling Vehicles 

The major problem for material handling vehicles such as AGVs and AMRs is to identify a set of 

optimal routes, with consideration of conflicts, whereby a fleet of vehicles can serve given 

transportation requests. This problem can be categorized into three sub-problems: path finding 

(PF), vehicle routing (VR), and conflict resolution (CR). This chapter provides a detailed overview 

of the research streams focusing on three sub-problems (see Table 2.1). 

2.3.1 Path Finding (PF) 

In general, the goal of PF problems is to find the best path between two locations whereby the sum 

of the costs of edges is minimized. A map or workspace (e.g. a 2D grid map) can be formulated as 

a graph G = (V, E) wherein the vertices (V) represent locations and the edges (E) represent 

segments of road, which are weighted by the time, length, or any cost needed to travel. When 

finding the shortest path for AMRs, consideration of obstacles is necessary, because it affects the 

feasibility of paths and the expected arrival time of a transportation request.  
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Table 2.1 Overview of research related to path finding, vehicle routing, and conflict resolution 

Type Algorithm Reference 

Path finding 

Breadth-first search Moore (1959) 

Dijkstra Dijkstra (1959) 

A* Hart et al. (1968) 

Hierarchical A* Botea et al. (2004) 

FastMap Cohena et al. (2018) 

D* Lite 
Koenig and Likhachev 

(2002) 

Multi-agent 

path finding 

Conflict-based search Sharon et al. (2015) 

Real-time heuristic search Sigurdson et al. (2018) 

M* Wagner and Choset (2011) 

Reinforcement learning Godoy et al. (2015) 

Deep reinforcement learning Long et al. (2018) 

Mixed integer programming Schouwenaars et al. (2001) 

Sequential convex programming Chen et al. (2015) 

Mixed integer linear programming (MILP) Yu and LaValle (2016) 

Mixed integer nonlinear programming Wang et al. (2019) 

Vehicle 

routing 

 

MILP Savelsbergh and Sol (1995) 

MILP with two-index formulation Furtado et al. (2017) 

Dynamic programming Mahmoudi and Zhou (2016) 

Dispatching rules 
Ho and Chien (2006); Ho and 

Liu (2009) 

Double-horizon-based heuristics Mitrović-Minić et al. (2004) 

Adaptive large neighborhood search Li et al. (2016) 

Hybrid large neighborhood search Curtois et al. (2018) 

NSGA-II-based evolutionary algorithm Phan and Suzuki (2016) 

Evolutionary algorithm with PSO and GA 
Muñoz-Carpintero et al. 

(2015) 

Conflict 

resolution 

Collision avoidance by negotiation Asama et al. (1991) 

Local Collision Avoidance Guy et al. (2009) 

Structural Control Policy Reveliotis (2000) 

Distributed control mechanism 
Zheng et al. (2013); Chen et 

al. (2017) 

Behavior-based Multi-Robot Collision 

Avoidance 
Sun et al. (2014) 

Zone Controller Agent (ZCA) Srivastava et al. (2008) 

 

As the most commonly used approach to finding the shortest path, A* algorithm proposed by 

Hart et al. (1968) has proven its applicability to a variety of path finding problems, especially in a 

discrete space (Yuan et al. 2016). Due to its versatility, many variations of A* algorithms such as 

Hierarchical A* also have been studied (Botea et al. 2004). Similarly, the D* algorithm comes 
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from the term “Dynamic A*”, because the algorithm behaves like A* except that the arc costs can 

change as the algorithm runs (Koenig and Likhachev 2002). More recently, A* algorithm with 

preprocessing, called FastMap, inspired by data mining, was proposed to improve performance 

and shorten computation time (Cohena et al. 2018).  

In addition to these algorithms, the concept of multi-agent path finding (MAPF) has been 

widely studied in robotics. As with the single-agent PF, the goal of MAPF is to find collision-free 

paths for multiple robots for a given problem with consideration of obstacles, but MAPF is an NP-

hard problem even when approximating optimal solutions (Ma et al. 2019). In order to solve MAPF 

algorithms, various mathematical models (e.g. mixed integer programming, mixed integer linear 

or nonlinear programming, and Sequential convex programming) have been proposed 

(Schouwenaars et al. 2001; Chen et al. 2017; Yu and LaValle 2016; Wang et al. 2019). On the 

other hand, due to MAPF’s NP-hard nature, various heuristics such as M* also have been studied 

in order to solve it within a reasonable time (Sharon et al. 2015; Sigurdson et al. 2018; Wagner 

and Choset 2011).  

Some of the prior work based on centralized methods assumed that comprehensive knowledge 

about all agents is given for a central server in order to control their action. These centralized 

methods have a limitation in that, when scaling to large systems with many robots, their 

performance can be poor when task reassignments are required frequently. Thus, in more recent 

times, decentralized multi-robot collision avoidance with deep reinforcement learning has been 

studied (Godoy et al. 2015; Long et al. 2018). Meanwhile, in order to consider task allocation with 

MAPF, Liu et al. (2019) studied a Multi-Agent Pickup-and-Delivery (MAPD) problem with TA-

Prioritized, which uses prioritized planning to plan collision-free paths on which the robots can 

serve all of their transportation requests, and determines the sequence of transportation requests 

for each agent. 

2.3.2 Vehicle Routing (VR) 

The vehicle routing problem (VRP) with AMRs is a combinatorial optimization problem entailing 

identification of a set of optimal routes (with consideration of recharging) whereby a fleet of robots 

can serve transportation requests. Especially, in material handling wherein parts or finished 

products must be collected from a pickup location and delivered to a paired delivery location, the 

VRP can be classified as a pickup and delivery problem (PDP). 



 

26 

 

Due to the need for optimal solutions to the PDP, exact approaches such as mathematical 

models have been proposed. Savelsbergh and Sol (1995) formulated a mathematical model for the 

general PDP as well as a dynamic version of the model for re-optimization at a specific point in 

order to consider newly arriving requests. Also, Furtado et al. (2017) proposed a new mixed integer 

linear programming (MILP) that allows for the assignment of vehicles to routes explicitly in two-

index flow formulations. Mahmoudi and Zhou (2016) had earlier proposed a dynamic-

programming-based approach to find optimal solutions for the PDP with a single vehicle. 

However, because of the NP-hard nature of the PDP, these exact approaches are applicable 

only to small-sized problems. Thus, heuristic algorithms are widely studied to find good solutions 

more quickly. Among heuristics, dispatching rules (DRs) are widely used in practice, particularly 

in the case of PDPs for AGVs, owing to their short computation times. Ho and Chien (2006) 

studied the control problem of multiple-load AGVs and proposed DRs for two sub-problems: task-

determination and delivery-dispatching. Ho and Liu (2009) addressed the performance of pickup-

DRs and load-selection rules for multiple-load AGVs based on a detailed flow chart for control of 

multiple-load AGVs. In terms of constructive heuristics, Mitrović-Minić et al. (2004) proposed 

double-horizon-based heuristics for the dynamic PDP-TW wherein future transportation requests 

are not known a priori. 

With regard to metaheuristic algorithms, evolutionary algorithms such as adaptive large 

neighborhood search (ALNS), genetic algorithm (GA), and particle swarm optimization (PSO) are 

widely used to solve various PDPs. Especially, hybrid approaches that incorporate a GA into local 

search methods have been investigated in order to explore possible solutions (Muñoz-Carpintero 

et al. 2015; Phan and Suzuki 2016). In addition to hybridization, neighborhood-search-based 

algorithms using a given set of search operators have been studied as well (Li et al. 2016; Curtois 

et al. 2018). 

2.3.3 Conflict Resolution (CR) 

The purpose of conflict resolution (CR) is to detect expected conflicts between routes and to 

resolve those conflicts efficiently. Especially for AGV systems, Reveliotis (2000) specified two 

types of conflicts (collisions and deadlocks) as well as behaviors such as re-routing and 

backtracking. However, similarly to PF, the centralized approaches might be inappropriate for 

solving CR problems within a reasonable time, because behaviors such as re-routing are highly 
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involved with MAPF. Thus, to pursue better scalability, an early attempt to resolve conflicts 

between AMRs in a decentralized way was presented by Asama et al. (1991). They proposed an 

intelligent robot system named ACTRESS (ACTor-based Robots and Equipment Synthetic system) 

that incorporates dynamic path planning into decentralized collision avoidance with negotiations 

between robots. Researchers have proposed distributed approaches based on message-passing 

schemes, which resolve local (e.g. pairwise) conflicts without needing to form a joint optimization 

problem among all members of the team (Zheng et al. 2013; Chen et al. 2017). To solve conflicts 

locally, Sun et al. (2014) specified eight types of behaviors (e.g. WaitForGoThrough) for avoiding 

collisions and deadlocks. 

In order to implement decentralized concepts, agent-based modelling (ABM) has been applied 

to robots, especially AGV or AMR systems in material handling. Simulation tools based on ABMs 

such as AnyLogic and FlexSim are widely used to model the dynamics of crowds and robots in 

large-scale transportation, logistics, and warehousing models (Abar et al. 2017). For example, 

Srivastava et al. (2008) proposed a collaborative architecture with rules associated with each agent 

for finding the conflict-free minimum time motion planning of AGVs that are required to navigate 

unidirectional and bidirectional flow path network. Guy et al. (2009) also presented a local multi-

agent collision avoidance algorithm for real-time simulations. 

 Machine Learning Applications in Scheduling and Routing 

Although the above-mentioned studies have proposed various approaches for dealing with 

production scheduling and logistics, two issues persist in practice. The first issue is the 

computation time. Although exact approaches, such as MILP, can guarantee the optimal solution, 

they are often impractical due to their relatively long computation times for large problems. 

Moreover, while heuristic approaches can be applied to large problems, the computation time and 

quality of the solution vary with algorithm design, because their results remain limited owing to 

their reliance on randomized natural selection and recombination (Reynolds 1994). Thus, there is 

a significant need for ML-based application for minimization of computation time and human 

intervention. 
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2.4.1 Production Scheduling 

More recently, the increasing computational complexity of scheduling problems and computing 

power have fostered considerable interest in machine-learning applications for scheduling 

problems. Especially, inductive learning such as DT-based algorithms is an emerging area of 

research and application, due specifically to its interpretability. To solve a SMSP with a weighted 

maximum lateness objective, Olafsson and Li (2010) proposed a method to generate a set of rules 

from optimal solutions using the C4.5 algorithm, proposed by Quinlan (2014). The training data 

was generated from all pair-wise comparisons between jobs, and additionally, four derivative 

attributes based on the raw attributes were added. The results showed that the proposed method 

can find better rules compared with the application of data mining algorithms to the training data. 

Shahzad and Mebarki (2016) also presented an approach for extraction of DRs using the C4.5 

algorithm with pre-defined predictors (e.g. number of jobs in system, average remaining time until 

due dates). To verify the performance, they also conducted experiments with problem instances 

for minimization of maximum lateness and compared the results with those for well-known DRs 

such as COVERT, ATC, and slack. In terms of generating schedules to be learned, Zahmani and 

Atmani (2018) proposed an approach for 1|| ∑ 𝑤𝑗𝑇𝑗  based on DTs with the C4.5 algorithm from 

best schedules generated by a hybrid GA. The aim of the approach is to mimic the behavior of best 

schedules from the hybrid GA while retaining DRs’ advantages such as short processing time and 

reactivity to dynamic scheduling. 

In addition to the DT-based algorithms, other classification algorithms have also been applied 

to discover rules from given schedules. Bergmann et al. (2017) presented an approach for 

approximation of DRs through various machine-learning techniques, including the naïve Bayes 

classifier, classification and regression trees (CART), k-nearest neighbors (kNN), and artificial 

neural networks (ANN). In terms of ensemble learning methods based on DTs, Jun et al. (2019) 

introduced a random-forest-based approach called Random Forest for Obtaining Rules for 

Scheduling (RANFORS) to extract DRs from the best schedules. In order to improve the 

robustness of DT by overcoming overfitting problems, RANFORS applied random forest (RF) 

with the discretization technique that partitions continuous attributes into a given number of classes.  

In order to improve the performance of learning algorithms, construction of new attributes 

based on the scheduling domain knowledge has been proposed. Li and Olafsson (2005) showed 

the benefits of constructed attributes that combines raw attributes for simultaneous minimization 
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of the number of nodes in the DTs and maximization of accuracy. Based on their previous work, 

Li and Olafsson (2010) proposed a two-phase approach for learning DRs with best scheduling 

practices, but four constructed attributes based on comparisons such as ‘Job1 release earlier’ and 

‘Job1 weight higher’ had been added manually to improve the accuracy.  

More recently, Shahzad and Mebarki (2016) applied new attributes called predictors (e.g. the 

number of jobs in the system, the percentage of jobs with relatively longer processing times, and 

the relative tightness ratio). Jun et al. (2019) applied random forests for learning DRs with 

discretization of continuous attributes as well as constructed attributes. In both of the above-noted 

studies, constructed attributes, as predefined from the domain knowledge, were supplemented to 

the training data. 

2.4.2 Vehicle Routing 

With applications of well-known ML models such as neural networks (NNs), data-driven solution 

approaches for modern smart delivery systems are an emerging area of research and application, 

due specifically to the abilities of learning from experience (Nalepa 2020). In the case of 

supervised learning, Chen et al. (2013) proposed a framework to mimic current dispatch processes 

and generate solutions for the PDP by learning from historical data. In the paper, the decision-tree 

algorithm called Logistic Regression Tree with Unbiased Selection (LOTUS) was used. Also, 

Arnau et al. (2018) proposed a learnheuristic-based approach that integrates a multiple linear 

regression model within a metaheuristic framework. 

In addition to the above supervised learning, Nazari et al. (2018) proposed an end-to-end 

framework for solving the vehicle routing problem (VRP) using reinforcement learning. In this 

approach, they trained a single policy model that finds near-optimal solutions for a broad range of 

problem instances of similar size. In the case of autonomous taxis and ridesharing vehicles, 

reinforcement-learning-based algorithms with decentralized or distributed learning for PDPs were 

broadly studied (Rahili et al. 2018; Shi et al. 2019). 
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CHAPTER 3. SINGLE MACHINE SCHEDULING PROBLEM 

A part of this chapter is published in International Journal of Production Research:  

Jun, S., & Lee, S. (2020). Learning dispatching rules for single machine scheduling with 

dynamic arrivals based on decision trees and feature construction. International Journal of 

Production Research, DOI: 10.1080/00207543.2020.1741716. 

 Introduction 

In solving the dynamic single-machine scheduling problems (SMSPs), dispatching rules (DRs) 

have played an important role; in fact, their development has drawn great attention from 

researchers and practitioners. Although other solution approaches such as mathematical models 

and heuristics might outperform them, DRs are frequently used in practice due to their ease of 

implementation and quick computation time (Tay and Ho 2008). 

The further development of more and more efficient DRs necessitates close investigation of 

the important attributes that potentially affect the performance. However, due to the increasing 

complexity of manufacturing environments, it is often difficult to consider all attributes of the shop 

floor. Furthermore, much of the underlying logics of a schedule might be implicit, and, as such, 

challenging to capture intuitively. Thus, further research on learning of efficient DRs from 

previous or good schedules by consideration of various attributes is a significant step towards 

increasing the possibilities and potentialities of field application. 

The remainder of this chapter is organized as follows: Chapter 3.2 defines the SMSP with the 

aim of minimizing the total weighted tardiness, and Chapter 3.3 presents its solution: the proposed 

DT-based approach with feature construction. Chapter 3.4 discusses the experiments conducted to 

verify the validity of the proposed approach. Finally, Chapter 3.5 summarizes conclusions and 

contributions. 

 Problem Definition 

Using the well-known three-field notation (Pinedo 2012), the dynamic SMSP for minimization of 

the total weighted tardiness can be denoted by 1|𝑜𝑛𝑙𝑖𝑛𝑒-𝑡𝑖𝑚𝑒, 𝑟𝑗| ∑ 𝑤𝑗𝑇𝑗 , and even its offline 

version is NP-hard in the strong sense (Lawler 1977). The basic assumptions followed in this paper 

are as follows: 
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 The shop floor has one machine and the machine cannot process more than one job 

simultaneously. 

 Each job has four attributes, processing time 𝑝𝑗 , release date 𝑟𝑗 , due date 𝑑𝑗 , and weight 

𝑤𝑗  that represents the importance of job 𝑗. 

 𝑛 jobs are released over time and are processed once on the machine without preemption. 

 The attributes of a job are unknown in advance unless the job is currently available at the 

machine. 

 The objective is to determine a sequence of jobs on the machine in order to minimize the 

total weighted tardiness (∑ 𝑤𝑗𝑇𝑗), which is defined as ∑ 𝑤𝑗 ∙ 𝑚𝑎𝑥(0, 𝐶𝑗 − 𝑑𝑗), where 𝐶𝑗 is 

the completion time of job 𝑗. 

In order to find the optimal or best feasible solutions for learning data, we implemented a 

mathematical model for SMSPs under offline setting wherein release dates are known at the 

beginning. The mathematical model for the offline SMSP for minimization of the total weighted 

tardiness proposed by Chou et al. (2005) is presented. 

3.2.1 Indices and sets 

𝑖, 𝑗 jobs (𝑖, 𝑗 ∈  𝑁) 

3.2.2 Parameters 

𝑝𝑖  the processing time of job 𝑖 

𝑑𝑖  the due date of job 𝑖 

𝑟𝑖  the release date of job 𝑖 

𝑤𝑖  the weight of job 𝑖 

𝑀 a large number 
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3.2.3 Decision variables 

𝑋𝑖𝑗  If job 𝑗 is scheduled after job 𝑖, 𝑋𝑖𝑗 = 1; otherwise 𝑋𝑖𝑗 = 0. 

𝐶𝑖 the completion time of job 𝑖 

𝑇𝑖  the tardiness of job 𝑖 (𝑇𝑖 = 𝑀𝑎𝑥(0,  𝐶𝑖 − 𝑑𝑖))  

3.2.4 Mathematical Formulation 

Min 𝐹 = ∑ 𝑤𝑖 ∙𝑖∈𝑁 𝑇𝑖    

s.t. 𝑋𝑖𝑗 + 𝑋𝑗𝑖 = 1     ∀𝑖, 𝑗 ∈ 𝑁, 𝑖 ≠ 𝑗 (1) 

 𝐶𝑖 ≥ 𝑟𝑖 + 𝑝𝑖      ∀𝑖 ∈ 𝑁 (2) 

 𝐶𝑖 − 𝐶𝑗 + M ∙ 𝑋𝑖𝑗 ≥ 𝑝𝑖      ∀𝑖, 𝑗 ∈ 𝑁, 𝑖 ≠ 𝑗 (3) 

 𝐶𝑖 − 𝑑𝑖 ≤ 𝑇𝑖      ∀𝑖 ∈ 𝑁 (4) 

and   

 𝑋𝑖𝑗 ∈ {0,1}     ∀𝑖, 𝑗 ∈ 𝑁, 𝑖 ≠ 𝑗  

 𝐶𝑖 ≥ 0, 𝑇𝑖 ≥ 0 ∀𝑖 ∈ 𝑁   

 

Constraint (1) represents the sequence relationship between any two jobs. Constraint (2) 

guarantees that the completion time of a job should be greater than the sum of its processing time 

and the current time. Constraint (3) determines the completion time based on 𝑋𝑖𝑗  by using a large 

number 𝑀. Constraint (4) determines the tardiness of jobs. 

 Proposed Methodology 

In this subchapter, a new approach called Generation of Rules Automatically with Feature 

construction and Tree-based learning (GRAFT) is proposed. GRAFT proceeds in two phases: 

learning DRs from schedules and improving the DRs with feature construction based on genetic 

programming. The objective of the first phase is to find efficient DRs based on given schedules, 

which can be obtained from previous operation or solution approaches. With the application of the 

first phase, scheduling knowledge of why one job is dispatched ahead of another can be extracted 

without any information about the objective function.  
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The second phase is designed for improvement of the performance of DRs with feature 

construction based on a set of problem instances for training. The goal of this phase is to discover 

a new attribute by combining various attributes and to use it to generate improved DTs with the 

combinations of existing attributes. The distinguishing feature of GRAFT is that it has three 

modules (retrieval of scheduling decisions, construction of attributes by comparison, and feature 

construction) for improvement of DTs with the aim of better performance and robustness. The 

proposed approach can be summarized as follows (see Figure 3.1): 

 

 

Figure 3.1 Overall GRAFT framework 

3.3.1 Learning Dispatching Rules from Schedules 

3.3.1.1 Retrieval Procedures of Scheduling Decisions (RPSD) 

Based on the RHP with the non-delay concept proposed by Chou et al. (2005), the retrieval 

procedures of scheduling decisions (RPSD) was implemented. According to the non-delay 

concept, when the machine finishes the process of one job, the next job should be chosen 

immediately among jobs in queue. RPSD finds which jobs have arrived by means of the rolling of 

a timer. After that, every job in queue is compared to the ‘selected’ job at timer to retrieve why the 

selected job was dispatched ahead of another ‘candidate’ job with consideration of various 

attributes. Based on a schedule list and its problem instance, a training dataset (Training) is 

generated as shown in Figure 3. 
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Figure 3.2 Retrieval of scheduling decisions and construction of new attributes from all pair-wise 

comparisons between jobs 

 

 

Algorithm 1 – RPSD 

 Input: Set of scheduled jobs (S) 

 Output: Flat data for training (Training) 

 𝑡𝑖𝑚𝑒𝑟 = 0  

 for (𝑡 = 1 𝑡𝑜 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑗𝑜𝑏𝑠 𝑖𝑛 𝑆) { 

 selected ← t th job 

 timer ← the start time of selected 

 find a list of jobs (𝐾𝑡) that arrived and are available at timer 

 if (𝑠𝑖𝑧𝑒 𝑜𝑓 𝐾𝑡 = 1) then { go to the next iteration } 

 else { 

 for each (job candidate in 𝐾𝑡 – selected){ 

 call AppendDecision (selected, candidate, Yes) 

 call AppendDecision (candidate, selected, No) 

 } end for 

   } end if 

 } end for 

 return Training 

  

 Function AppendDecision (Job A, Job B, GoAFirst){ 

 add raw attributes  

 append a row with values of the output class GoAFirst and all attributes to Training 

 return 

 } 

 End Function 
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Based on a given schedule, RPSD disintegrates it into a series of iterations, which are 

distinguished by decision points (𝑡). Each iteration involves three steps: identifying available jobs 

(𝐾𝑡) at the current decision point 𝑡, finding the other candidate jobs, and converting the scheduling 

decision into flat data with attributes. The detailed procedures of the RPSD are presented in the 

following Algorithm 1. 

3.3.1.2 Construction of Attributes by Relative Comparisons (CARC) 

Olafsson and Li (2010), in order to extract underlying scheduling decisions more effectively, 

introduced four additional attributes with two classes (≤ or >) that indicate whether the first job in 

the row is released earlier, due earlier, and has lower processing time or higher weight. In order to 

improve the performance and robustness of DT-based algorithms, the concept with consideration 

of feature interactions by comparing the same attributes for two jobs is extended more specifically. 

For example, the comparison of due dates between two jobs (𝑑𝐴 and 𝑑𝐵) can generate a constructed 

attribute with three classes (𝑑𝐴 < 𝑑𝐵 , 𝑑𝐴 = 𝑑𝐵, 𝑑𝐴 > 𝑑𝐵). 

As shown in Table 3.1, commonly used attributes are included based on the information about 

jobs and the shop floor at a specific moment (Nguyen 2016). This CARC process is also applied 

to newly generated attributes by feature construction in Chapter 3.3.2.  

 

Table 3.1 Raw attributes and constructed attributes with CARC 

Source 

Attribute Type 

(Number of 

attributes) 

Attribute Description 

Sequencing 

jobs 

Raw attributes 

(8) 

Due date of J1, release date of J1, weight of J1, 

processing time of J1, due date of J2, release date of J2, 

weight of J2, processing time of J2 

Categorical 

constructed 

attributes (4) 

Comparison between due dates, comparison between 

release dates, comparison between weights, comparison 

between processing times 

Shop floor 
Raw attributes 

(5) 

Current time, number of jobs in queue, utilization of the 

machine, total waiting time in queue, sum of processing 

times of jobs in queue 
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3.3.1.3 Learning Dispatching Rules with Decision-tree-based Algorithm 

In order to constitute a DR by mimicking behaviours from the training data, a DT is generated by 

using the C4.5 algorithm, due specifically to its interpretability. Based on this DT, a DR determines 

the next job to be processed at each decision point similarly to RPSD but in reverse order.  First, 

jobs that can be processed at a timer are sorted by the output classes of the DT. For example, when 

an output class ‘GoFirst’ of the DT is ‘Yes’, it means that Job 1 tends to precede Job 2; thus, Job 

1 is selected. By comparing all output classes for jobs in queue at 𝑡, the next job to be processed 

is selected. Based on the assignment of all jobs to the machine, a detailed schedule and its 

performance are determined. The detailed procedures of the DR with DT are presented in the 

following Algorithm 2. 

 

Algorithm 2 – DR with DT 

 Input: DT learned by the training data 

 Output: Set of scheduled jobs (S), Total weighted tardiness (wT) 

 𝑡𝑖𝑚𝑒𝑟 = 0, 𝑤𝑇 = 0, 𝑆 =  ∅  

 while (all jobs are processed) { 

 find a list of jobs (𝐾) in queue at timer 

 if (𝐾 = ∅) then {increase 𝑡𝑖𝑚𝑒𝑟}  

 else if (𝑠𝑖𝑧𝑒 𝑜𝑓 𝐾 = 1) { timer ← sum of timer and the processing time of the job in K 

 add the job in K to S and wT ← wT + max(0, timer − the due date of the job in K) } 

 else { selected = the first job in 𝐾 

 for (𝑖 = 2 𝑡𝑜 𝑠𝑖𝑧𝑒 𝑜𝑓 𝐾){ 

 if (Decide_DT(selected, 𝑖th job in 𝐾) is ‘No’) { selected = 𝑖th job in 𝐾 }} end if 

 timer ← sum of timer and the processing time of selected 

 add selected to S and wT ← wT + max(0, timer − the due date of selected) 

   } end if 

 } end while 

  

 Function Decide_DT(Job A, Job B){ 

 add new attributes by comparing two jobs 

 return the output from the DT} 

 End Function 

 

3.3.2 Improving Learned DRs with Feature Construction by Genetic Programming 

In this section, a new approach for improvement of a learned DR in the previous phase with feature 

construction by GP (FCGP) is presented. The purpose of GP is to discover hidden relationships 



 

37 

 

between attributes inferring new composite attributes. By incorporating new attributes generated 

into a DT, FCGP can improve its performance while keeping the interpretability with compact 

sizes. For example, Smith and Bull (2005) showed that the hybridization of GP and C4.5 

outperforms the standard C4.5 and that the constructed features helped DT to achieve smaller error 

rates with much smaller sizes. The overall FCGP can be summarized as shown in Figure 3.3. 

 

 

Figure 3.3 Overall FCGP framework 

 

3.3.2.1 Chromosome Representation 

To represent the expression for constructing a new attribute, the postfix notation for chromosome 

representation proposed by Dabhi and Vij (2011) is used. Unlike the infix notation, the postfix 

notation changes the position of the operators by moving them towards the right of the operands. 

In the case of postfix notation, stack can be used to transform a chromosome into an expression as 

shown in the below steps. 

Step 1 Set the current gene to the start gene of a chromosome. 
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Step 2 Identify the type of the current gene. If the current gene represents an operand, go 

to Step 3; otherwise go to Step 4. 

Step 3 Push the operand that represents an attribute on the stack and go to Step 5. 

Step 4 Check whether there is the required number of operands in the stack. If the number 

of operands in the stack is not sufficient for the operator, mark the gene as ‘unused’ 

and go to Step 5; Otherwise, pop operands from the stack, combine operands and 

the operator into an intermediate expression, and push it on the stack. 

Step 5 Set the next gene to the current gene and go to Step 2 until the current gene is the 

last gene of the chromosome. 

 

Based on the previous literature on GP for scheduling (Nguyen et al. 2017; Zhou et al. 2019), 

the operators and operands used in this dissertation are described in Table 3.2.  

 

Table 3.2 Operands and operators for genetic programming 

Type of gene Description 

Operand (12) 

Due date, release date, weight, processing time, number of jobs, sum 

of processing times of all jobs, current time, number of remaining 

jobs, number of jobs in queue, utilization of the machine, total 

waiting time in queue, sum of processing times of jobs in queue 

Operator (4) +, −,×,÷ 
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Figure 3.4 Chromosome representation and decoding procedure with postfix method 

 

Figure 3.4 represents a chromosome in postfix notation, maximum and valid lengths, and 

the tree representation of the chromosome. The maximum and minimum lengths are specified by 

users. The valid length of a chromosome is defined as the number of used genes and it should be 

equal to or greater than the minimum length. Even if the maximum length is fixed, expressions of 

chromosomes can have different sizes and structures according to the valid length. For example, 

the simplest expression can be only one attribute (i.e. when all genes of a chromosome except one 

operand are operators) and the longest expression can be a chromosome that uses all the genes are 

used. In order to maintain the understandability of new attributes generated by genetic 

programming, the four basic operators along with the limited maximum length of a chromosome 

were used. 

Chromosomes in the initial population are generated randomly, and the random generation 

process for each chromosome is repeated until the valid length of the chromosome is equal to or  

greater than the minimum length. 
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3.3.2.2 Reproduction 

A new population for the next generation is generated by reproduction with two operators 

(crossover and mutation) based on the chromosomes of the current population. To change the 

expression of a single chromosome, the mutation operator selects a gene randomly in the 

chromosome and reassigns it to another value. In the case of crossover, a one-point crossover is 

applied because it strongly preserves the good characteristics of two chromosomes. Examples of 

the implementation of the mutation and crossover operator are shown in Figures 3.5 and 3.6, 

respectively. 

 

 

Figure 3.5 Illustration of mutation operation 
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Figure 3.6 Illustration of crossover operation 

 

3.3.2.3 Evaluation and Selection 

After the generation of chromosomes according to the given number of populations, the 

chromosomes are evaluated by the total weighted tardiness. To evaluate the performance of a 

chromosome, the chromosome is converted into an expression by postfix notation, and a new 

attribute constructed by the expression is added to the original flat data for training. Based on a 

DT from the updated training data (DT_GP), a new DR is generated. The detailed procedures of 

the DR with DT_GP are shown in Algorithm 3. 

 

Algorithm 3 – DR with DT and FCGP 

 Input: DT_GP learned by the training data 

 Output: Set of scheduled jobs (S), Total weighted tardiness (wT) 

 𝑡𝑖𝑚𝑒𝑟 = 0, 𝑤𝑇 = 0, 𝑆 =  ∅  

 while (all jobs are processed) { 

 find a list of jobs (𝐾) in queue at timer 

 if (𝐾 = ∅) then {increase 𝑡𝑖𝑚𝑒𝑟}  

 else if (𝑠𝑖𝑧𝑒 𝑜𝑓 𝐾 = 1) { timer ← sum of timer and the processing time of the job in K 

 add the job in K to S and wT ← wT + max(0, timer − the due date of the job in K) } 

 else { 

 selected = the first job in 𝐾 

 for (𝑖 = 2 𝑡𝑜 𝑠𝑖𝑧𝑒 𝑜𝑓 𝐾){ 
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 if (Decide_DT_GP(selected, 𝑖th job in 𝐾) is ‘No’) { selected = 𝑖th job in 𝐾 } end if 

 } end for 

 timer ← sum of timer and the processing time of selected 

 add selected to S and wT ← wT + max(0, timer − the due date of selected) 

   } end if 

 } end while 

 return S and wT 

  

 Function Decide_DT_GP(Job A, Job B, Chromosome){ 

 add new attributes by comparing two jobs 

 add new attributes by comparing between attributes generated by Chromosome of A 

and B. 

 return the output from the DT_GP} 

 End Function 

 

The evaluation of a chromosome is determined by the fitness function, which is defined as the 

average total weighted tardiness of problem instances for training, which is calculated by the DR 

with DT_GP. The termination criterion is the number of generations and the selection of surviving 

chromosomes is determined by the tournament selection method to preserve the desirable 

characteristics of chromosomes for the next generation. 

 Experimental Results 

In this section, the training data from the best solutions for each training problem was generated 

and simulation experiments on similar and different types of problem instances were performed to 

compare the performance and robustness of the existing DRs. 

3.4.1 Generation of Problem Instances and Training Data 

Problem instances were randomly generated by using parameters from the method proposed by 

Chu (1992) and Akturk and Ozdemir (2000). Each problem instance is generated at random from 

four uniform distributions of 𝑤𝑗 , 𝑟𝑗 , 𝑝𝑗 , and 𝑑𝑗 − (𝑟𝑗 + 𝑝𝑗). The distribution of 𝑝𝑗  and 𝑤𝑗  is always 

between 1 and 10. The distribution of 𝑟𝑗  was generated from a uniform distribution ranging from 

0 to 𝛼 ∑ 𝑝𝑗, where four different 𝛼 values [0.0, 0.5, 1.0, 1.5] were used. In the case of due dates, 

instead of generating them directly, slack times (𝑑𝑗 − (𝑟𝑗 + 𝑝𝑗)) were generated from a uniform 

distribution between 0 and 𝛽 ∑ 𝑝𝑗 where three different 𝛽 values [0.05, 0.25, 0.5] were used. To 
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generate 120 problems for each size, a total of 12 problem instances based on combinations of 𝛼 

and 𝛽 were considered, and 10 replications were taken for each combination. 

To solve the defined MILP in Chapter 3.2, IBM ILOG CPLEX optimizer version 12.7.1 with 

default settings was used and the run time was limited to 3,600 seconds. Also, in order to reduce 

the searching space and improve the solution quality, four properties proposed by Chou et al. (2005) 

were applied. To obtain the training dataset for learning, the optimal or best feasible solutions were 

obtained under offline setting wherein release dates are known at the beginning. To generate 

training problem instances (48 problems), 12 problem instances based on combinations of 𝛼 and 

𝛽 were considered and 4 replications were taken for each combination. The average performances 

of solutions for the offline SMSPs obtained by solving MILPs are compared in Table 3.3. 

 

Table 3.3 Results summary of optimal or best feasible solutions for offline SMSPs 
 

Offline MILP 

Average ∑ 𝑤𝑖𝑇𝑖  1712.97 

Average CPU time (s) 1800.53 

 

As shown in Figure 3.1, the test set of problem instances was used as a training set, and the 

best solutions for the training set of problems were transformed into the training data. The training 

data contained 17440 instances, where each class refers to a scheduling decision derived by RPSD 

as described in Chapter 3.3.1.1. 

3.4.2 Comparison among Different Dispatching Rules Generated by Learning Algorithms 

for Training Data 

All of the algorithms were coded in C#, and the experiments were run on an Intel Xeon E5-1620 

3.6 GHz processor with 16 GB of RAM. To compare the performances of the different learning 

techniques, four classification algorithms (C4.5 without FCGP, k-nearest neighbors (kNN), 

random forest (RF), and artificial neural network (ANN)) were also implemented. The detailed 

experimental parameters of the learning algorithms are listed in Table 3.4. 
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Table 3.4 Parameters of learning algorithms and GRAFT 

Algorithm Parameter Value 

C4.5 Maximum height of trees 3 

k-nearest neighbors (kNN) Number of neighbours (k) 3 

Random forest (RF) 

Maximum height of trees 10 

Number of trees 75 

Sample ratio 0.8 

Artificial neural network (ANN) 

Training algorithm Levenberg–Marquardt 

Number of hidden neurons 50 

Number of epochs 20 

Weight initialization Nguyen-Widrow 

Activation function Bipolar sigmoid 

GRAFT 

Population size 100 

Number of generations 10 

Mutation rate 0.3 

Crossover rate 0.3 

Tournament size 5 

Maximum length 10 

 

The results for each algorithm are summarized in Table 3.5 below. To verify the performances 

of the learning algorithms for the training data, the average total weighted tardiness was compared 

on 48 problem instances of the training set, the computation time for training, and the classification 

accuracy, as shown in the table. In terms of the average computation times for scheduling, all of 

the DRs could find solutions for the training problem instances in less than 1 second. 

In terms of the average total weighted tardiness for the training problems, two DT-based 

algorithms (C4.5 and GRAFT) could find better DRs with FCGP than could the other algorithms, 

whereas the other algorithms’ classification accuracies were higher than the DT-based algorithms’. 

One possible explanation for this result is that the DT-based algorithms are designed to discover 

general ‘rules’; thus, they appear to find more generalized DRs at the expense of accuracy. Two 

DTs are shown in Figure 10, with new FCGP-generated attributes highlighted in yellow. 
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Table 3.5 Average performances of DRs generated by learning algorithms for training data  

 Accuracy (%) 
Average ∑ 𝑤𝑇 for 

training set 

Computation time 

for training (s) 

C4.5 85.21 2840.56 5.42 

ANN 92.69 3784.46 171.62 

RF 94.84 3189.1 183.54 

kNN 98.28 2976.5 4.01 

GRAFT 93.27 2602.77 15309.88 

 

3.4.3 Comparison among Algorithms for Similar Types of Problem Instances with 

Training Data 

To validate the competitive performance of a DR learned by GRAFT, six well-known DRs: (SPT, 

WSPT, EDD, Slack, ATC, and COVERT) were implemented (Jouglet et al. 2008). In addition to 

the average total weighted tardinesses, the relative deviation index (RDI) was applied to compare 

the relative performances of the DRs with HGA. The RDI of the 𝑘th experiment was calculated as 

shown in Equation (5) (Akhshabi, Tavakkoli-Moghaddam, and Rahnamay-Roodposhti 2014): 

 

𝑅𝐷𝐼𝑘 =
𝐹𝑘 − 𝑀𝑖𝑛𝑘

𝑀𝑎𝑥𝑘 − 𝑀𝑖𝑛𝑘

× 100 (5) 

 

where 𝐹𝑘  is the total weighted tardiness obtained for the 𝑘th experiment, and 𝑀𝑎𝑥𝑘  and 𝑀𝑖𝑛𝑘  are 

the best and worst solutions in the 𝑘th experiment, respectively.  

The average total weighted tardiness, computation times, and RDIs of the DRs and MILP over 

120 problem instances for each 𝛼 and 𝛽 are compared in Table 3.6. Also, the average RDIs for 

each 𝛼 and the best RDIs for each test set are summarised in Figure 3.7. The figure shows the 

comparison between DRs with different 𝛼 levels determining the range of release dates (𝑟𝑗). For 

example, if 𝛼 is zero, all the jobs are ready to be processed at time 0 (𝑟𝑗 = 0); otherwise, each job 

𝑗 arrive at 𝑟𝑗 , which is randomly generated from 0 to 𝛼 ∑ 𝑝𝑗. 
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Table 3.6 Average performances of DRs for similar problem instances with training set 

 Average ∑ 𝑤𝑇 Average CPU time (s) Average RDI (%) 

Offline-MILP 1746.09 1904.48 0 

SPT 13037.98 < 1 82.38 

WSPT 4990.08 < 1 29.76 

EDD 3516.27 < 1 25.53 

Slack 3850.46 < 1 31.54 

ATC 3127.18 < 1 18.88 

COVERT 10504.49 < 1 68.29 

C4.5 2810.49 < 1 14.83 

ANN 3651.03 < 1 30.22 

RF 3215.33 < 1 22.35 

kNN 2984.92 < 1 17.87 

GRAFT 2560.53 < 1 9.91 

 

 

 

 

Figure 3.7 Average RDIs of DRs for similar problem instances with different α values. The best 

RDIs for each α are noted by an asterisk (*). 

 

Among the DRs, GRAFT performed the best in terms of the average total weighted tardiness 

for problem instances that were similar to the training sets. In terms of relative performance, the 

results showed that GRAFT still outperformed the other DRs in that it yielded the smallest average 
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RDI value for most cases. Thus, GRAFT has an advantage over the other DRs in terms of finding 

robust and good solutions for problems that are similar to the training problems. 

To delineate the changes in tree structures by FCGP, two DTs, a DT generated by C4.5 only 

with CARC and another DT generated by the entire GRAFT, are illustrated as shown in Figure 

3.8. The improved DT by GRAFT has a new attribute (highlighted in yellow), and the new branch 

with the attribute was ‘grafted’ to a DT for achieving higher performance relative to the DT without 

FCGP. 

 

 

 

Figure 3.8 Illustration of DTs generated by C4.5 without FCGP and with FCGP 

 

3.4.4 Comparison among Algorithms for Different Types of Problem Instances with 

Training Data 

In order to check the robustness of performance for different problems with the training problems, 

two sets of larger problem instances (50 and 100 jobs) were generated. In the same way as for the 

training problems, 120 problem instances for each 𝛼  and 𝛽  were generated for each set. To 

generate DRs for larger problems, the same training data as in Chapter 3.4.3 was used for 

verification of the generalizability. The average total weighted tardiness, computation times, and 

RDIs of the DRs and MILP over 120 problem instances for each number of jobs are compared in 

Table 3.7. Also, the average RDIs for the respective test sets and the best RDIs for each test set 

are summarized in Figure 3.9. 

The results indicated that the DR of GRAFT still produced the lowest average total weighted 

tardiness, as shown in Table 9 and Figure 10. The results also indicated that the gap of the average 
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RDIs between GRAFT and the other DRs continued to broaden when the size of the problem 

increased and the number of jobs in queue increased (the 𝛼 values determining the range of release 

dates decreased). 

In order to show the incremental improvements of GRAFT in fixed times, the changes on the 

average RDIs for different computation times were checked by changing termination condition to 

the maximum computation time. Figure 3.10 shows that the average RDI of a new attribute 

discovered by GRAFT was gradually improved and converged into a certain level as the maximum 

computation time increased. In addition, for all of the different numbers of jobs and computation 

times, GRAFT outperformed the other algorithms in terms of the average RDI as well as total 

weighted tardiness. Thus, the results showed that GRAFT with a fixed time also provides better 

performance than does C4.5. 

In summary, the simulation results demonstrated that GRAFT could offer good performance 

for a larger number of jobs compared with the others. In addition, GRAFT appears to find more 

generalized DRs with FCGP, because the average total weighted tardiness and RDI for different  

types of problems are smaller than for the other algorithms without FCGP. Thus, the DR by 

GRAFT, with its quicker computation speed, appears to be more applicable in terms of scalability 

for extremely large problems in the real world.
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Table 3.7 Average performances of DRs over two test sets with different number of jobs 

 50 jobs 100 jobs 

Avg. 
∑ 𝑤𝑇 

Avg. CPU 

time (s) 

Avg. 

RDI (%) 

Avg. 
∑ 𝑤𝑇 

Avg. CPU 

time (s) 

Avg. 

RDI (%) 

Offline-MILP 4743.48 2156.27 0 19747.73 2185.43 0 

SPT 39072.34 < 1 81.34 164333.9 < 1 78.05 

WSPT 12346.18 < 1 23.72 42072.83 < 1 18.41 

EDD 10143.41 < 1 26.61 41051.33 < 1 26.72 

Slack 10867.92 < 1 30.64 42788.44 < 1 29.34 

ATC 9096.47 < 1 20.97 38698.88 < 1 22.98 

COVERT 37158.72 < 1 83.37 180240.28 < 1 95.87 

C4.5 7625.59 < 1 13.22 29812.33 < 1 11.23 

ANN 10235.93 < 1 29.02 35868.68 2.38 21.21 

RF 9407.83 < 1 23.86 37793.68 2.32 24.15 

kNN 9096.65 < 1 21.74 37838.95 3.34 24.23 

GRAFT 6917.74 < 1 8.79 26962.43 < 1 6.57 

Note: The bold value indicates the best performance among the DRs. 
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Figure 3.9 Average RDIs of DRs for two test sets with different α levels. The best RDIs for each 

test set are noted by an asterisk (*).
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Figure 3.10 Performance improvements on average RDIs with different maximum computation 

times 

 Chapter Summary 

In this chapter, the SMSP with dynamic arrivals in order to minimize the total weighted tardiness 

is analyzed. In order to solve the SMSP, an approach called GRAFT that consists of two phases 

with three sub-modules is proposed: RPSD, CARC, and FCGP. By analyzing scheduling data from 

given schedules, DRs were extracted as a DT that can be expressed in a set of DTs or IF-THEN 

rules. To extract DRs more effectively, a mathematical model for the offline SMSP is formulated. 

Also, an automatic process for discovering the best combination of attributes with GP is proposed 

to achieve high and robust performance. The results of simulations showed that the new DR 

generated and improved by GRAFT outperformed prevalent DRs in terms of average performance 

and robustness, as it produced a smaller average total weighted tardiness and RDI values. 

The major contribution of this chapter is the development of a new approach for capturing both 

explicit and implicit knowledge from given schedules with less human intervention. Also, to 

improve the robustness and performance of DT-based algorithms regardless of the size of problems, 

the proposed GRAFT can consider more comprehensive attributes with CARC and find new 

attributes automatically by utilizing the evolutionary process of GP. Due to the ability to extract 

DRs from either previous schedules or best schedules, GRAFT can help schedulers to discover 

underlying logics that they might not be able to realize by themselves. Moreover, schedulers can 
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modify the DRs generated by GRAFT, because those rules are represented in understandable 

formats as DTs or rule sets. This interpretability of DTs enables experts to gain a better insight 

into the learned model and overcome the ‘black box’ problem, which is important to many real-

world applications. 
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CHAPTER 4. FLEXIBLE JOB SHOP SCHEDULING PROBLEM 

A part of this chapter is published in International Journal of Production Research:  

Jun, S., Lee, S., & Chun, H. (2019). Learning dispatching rules using random forest in 

flexible job shop scheduling problems. International Journal of Production Research, 

57(10), 3290-3310 

 Introduction 

Although the previous studies in Chapter 2.2 have proposed various approaches for dealing with 

FJSPs, in practice, two issues persist. The first issue is the computation time. Although exact 

approaches, such as MILP, can guarantee the optimal solution, they are often impractical due to 

their relatively long computation times for large problems. Moreover, while heuristic approaches 

can be applied to large problems, the computation time and quality of the solution vary with 

algorithm design, because their results remain limited owing to their reliance on randomized 

natural selection and recombination (Reynolds 1994).  

Another issue is the consideration of a variety of information for FJSPs. Although a number 

of previous studies have investigated efficient DRs with raw and constructed attributes, the lack 

of consideration of various attributes at the same time and robust performance has limited the 

applicability of DRs in spite of their quick computation time. Therefore, the development of 

automated algorithms for discovering DRs with simultaneous incorporation of important attributes 

is crucial for various manufacturing environments. Thus, extraction of implicit knowledge from 

given schedules enables smart factories to automate the development of dispatching rules while 

reflecting various attributes. 

This dissertation proposes a new approach based on inductive learning for FJSPs with release 

times. The approach generates a dispatching rule from scheduling knowledge of why one job is 

dispatched ahead of another with consideration of various attributes. The proposed approach 

consists of three steps: finding good solutions of FJSPs using existing solution approaches; 

transforming them into data for learning, and extracting dispatching rules using an ensemble 

machine learning method. 
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 Problem Description 

The FJSP, an extension of the JSP, allows an operation to be processed by any machine from a 

given set of alternative machines. The basic assumptions used in this proposal are as follows: 

 The processing time of an operation on a machine, the precedence constraint of operations, 

weight, release time, and due date of a job are known and constant. 

 All machines are available for the entire period of scheduling, and there are no machine 

breakdowns. Pre-emption is not allowed. 

In this section, an MILP model is introduced for the FJSP based on the work by Özgüven et al. 

(2010). This model is extended to consider the total weighted tardiness and release times. The 

following notation is used for the formulation of MILP: 

4.2.1 Indices and Sets 

𝑖 jobs (𝑖, 𝑖′ ∈  𝐽) 

𝑗 operations (𝑗,  𝑗′ ∈ 𝑂) 

𝑘 machines (𝑘 ∈ 𝑀) 

𝐽  the set of jobs 

𝑂 the set of operations 

𝑂𝑖  the ordered set of operations of job 𝑖 (𝑂𝑖 ⊆ 𝑂), where 𝑂𝑖𝑓(𝑖)
 is the first and 𝑂𝑖𝑙(𝑖)

 

is the last element of 𝑂𝑖  

𝑀 the set of machines 

𝑀𝑗  the set of alternative machines on which operation 𝑗 can be processed (𝑀𝑗 ⊆ 𝑀) 
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4.2.2 Parameters 

𝑡𝑖𝑗𝑘 the processing time of operation 𝑂𝑖𝑗  on machine 𝑘 

𝑟𝑖  the release time of job 𝑖 

𝑑𝑖  the due date of job 𝑖 

𝑤𝑖  the weight of job 𝑖 

𝐿 a large number 

4.2.3 Decision Variables 

𝑋𝑖𝑗𝑘  If machine 𝑘 is selected for operation 𝑂𝑖𝑗 , 𝑋𝑖𝑗𝑘 = 1; otherwise 𝑋𝑖𝑗𝑘 = 0. 

𝑌𝑖𝑗𝑖′𝑗′𝑘 If operation 𝑂𝑖𝑗  precedes operation 𝑂𝑖′𝑗′ on machine 𝑘, 𝑌𝑖𝑗𝑖′𝑗′𝑘 = 1; otherwise 

𝑌𝑖𝑗𝑖′𝑗′𝑘 = 0. 

𝑆𝑖𝑗𝑘  the start time of operation 𝑂𝑖𝑗  on machine 𝑘 

𝐶𝑖𝑗𝑘  the completion time of operation 𝑂𝑖𝑗  on machine 𝑘 

𝐶𝑖 the completion time of job 𝑖 

𝑇𝑖  the tardiness of job 𝑖 (𝑇𝑖 = 𝑀𝑎𝑥(0,  𝐶𝑖 − 𝑑𝑖))  

4.2.4 Mathematical Formulation 

The proposed mathematical model is as follows: 

Min  𝐹 = ∑ 𝑤𝑖𝑇𝑖  

s.t. ∑ 𝑋𝑖𝑗𝑘

𝑘∈𝑀𝑗

= 1     ∀𝑖 ∈ 𝐽,  ∀𝑗 ∈ 𝑂𝑖 (6) 
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 𝑆𝑖𝑗𝑘 + 𝐶𝑖𝑗𝑘 ≤ (𝑋𝑖𝑗𝑘) ∙ 𝐿     ∀𝑖 ∈ 𝐽,  ∀𝑗 ∈ 𝑂𝑖,  ∀𝑘 ∈ 𝑀𝑗 (7) 

 𝐶𝑖𝑗𝑘 ≥ 𝑆𝑖𝑗𝑘+𝑡𝑖𝑗𝑘 − (1 − 𝑋𝑖𝑗𝑘) ∙ 𝐿     ∀𝑖 ∈ 𝐽,  ∀𝑗 ∈ 𝑂𝑖 ,  ∀𝑘 ∈ 𝑀𝑗  (8) 

 𝑆𝑖𝑗𝑘 ≥ 𝐶𝑖′𝑗′𝑘 − (Y𝑖𝑗𝑖′𝑗′𝑘) ∙ 𝐿     ∀𝑖 < 𝑖′,  ∀𝑗 ∈ 𝑂𝑖 , ∀𝑗′ ∈ 𝑂𝑖′ , ∀𝑘 ∈ 𝑀𝑗 ∩ 𝑀𝑗′  (9) 

 𝑆𝑖′𝑗′𝑘 ≥ 𝐶𝑖𝑗𝑘 − (1 − Y𝑖𝑗𝑖′𝑗′𝑘) ∙ 𝐿     ∀𝑖 < 𝑖′,  ∀𝑗 ∈ 𝑂𝑖 , ∀𝑗′ ∈ 𝑂𝑖′ , ∀𝑘 ∈ 𝑀𝑗 ∩ 𝑀𝑗′  (10) 

 ∑ 𝑆𝑖𝑗𝑘

𝑘∈𝑀𝑗

≥ ∑ 𝐶𝑖,𝑗−1,𝑘

𝑘∈𝑀𝑗

     ∀𝑖 ∈ 𝐽,  ∀𝑗 ∈ 𝑂𝑖 − {𝑂𝑖𝑓(𝑖)
} 

(11) 

 𝐶𝑖 ≥ ∑ 𝐶𝑖𝑂𝑖𝑙(𝑖)
𝑘

𝑘∈𝑀𝑗

     ∀𝑖 ∈ 𝐽 
(12) 

 ∑ 𝑆𝑖𝑂𝑖𝑓(𝑖)
𝑘

𝑘∈𝑀𝑗

≥ 𝑟𝑖      ∀𝑖 ∈ 𝐽 
(13) 

 𝑇𝑖 ≥ 𝐶𝑖 − 𝑑𝑖      ∀𝑖 ∈ 𝐽 (14) 

and   

 𝑋𝑖𝑗𝑘 ∈ {0,1}     ∀𝑖 ∈ 𝐽,  ∀𝑗 ∈ 𝑂𝑖 ,  ∀𝑘 ∈ 𝑀𝑗   

 𝑆𝑖𝑗𝑘 ≥ 0     ∀𝑖 ∈ 𝐽,  ∀𝑗 ∈ 𝑂𝑖 ,  ∀𝑘 ∈ 𝑀𝑗   

 𝐶𝑖𝑗𝑘 ≥ 0     ∀𝑖 ∈ 𝐽,  ∀𝑗 ∈ 𝑂𝑖 ,  ∀𝑘 ∈ 𝑀𝑗   

 𝑌𝑖𝑗𝑖′𝑗′𝑘 ∈ {0,1}     ∀𝑖 < 𝑖′,  ∀𝑗 ∈ 𝑂𝑖 , ∀𝑗′ ∈ 𝑂𝑖′ , ∀𝑘 ∈ 𝑀𝑗 ∩ 𝑀𝑗′   

 𝐶𝑖 ≥ 0     ∀𝑖 ∈ 𝐽  

 𝑇𝑖 ≥ 0     ∀𝑖 ∈ 𝐽  

Constraint (6) guarantees that operation 𝑂𝑖𝑗  should be assigned to only one machine. 

Constraint (7) sets the start and completion times of operation 𝑂𝑖𝑗  on machine 𝑘 to zero if it is not 

assigned to machine 𝑘. Otherwise, constraint (8) guarantees that the difference between the start 

and the completion times is at least equal to the processing time 𝑡𝑖𝑗𝑘 on machine 𝑘. Constraints (9) 
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and (10) ensure that operations 𝑂𝑖𝑗  and 𝑂𝑖′𝑗′  cannot be processed at the same time on any machine 

in the set 𝑀𝑗 ∩ 𝑀𝑗′ . Constraint (11) guarantees that the precedence constraints between the 

operations of a job are not violated. Constraint (12) ensures the completion times of the last 

operations of the jobs. Constraint (13) guarantees that jobs cannot start before their release times, 

and constraint (14) determines the tardiness of jobs. 

 Proposed Methodology 

A new approach, called Random Forest for Obtaining Rules for Scheduling (RANFORS), consists 

of three phases: schedule generation, rule learning with data transformation, and rule improvement 

with discretization. The proposed approach can be summarized as follows (see Figure 4.1): 

 

 

Figure 4.1 Overall RANFORS framework 
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In the schedule generation phase, best solutions for given problem instances are generated as 

sources of learning rules for scheduling. In the second phase, once the solutions have been obtained, 

they are transformed into learning data by constructing new attributes. In this research, the term 

‘attributes’ refers to the set of all data related to the scheduling decisions. Finally, in the rule 

improvement phase, a genetic algorithm improves the performance of the dispatching rule by 

discretizing continuous attributes and tuning the parameters of random forest models. 

4.3.1 Schedule Generation 

The major purpose of this phase is to find best solutions as a training set for learning good 

dispatching rules. In this context, three approaches widely used in the literature and industrial 

problems were implemented. The performances of the approaches are also compared in Chapter 

4.4. 

4.3.1.1 Mixed-integer Linear Programming 

The MILP model proposed in Chapter 4.2.4 was coded in the IBM ILOG CPLEX, which solves 

the model by the branch-and-bound method, a traditional optimization technique that is widely 

used to solve MILP that can obtain the optimal solution. 

4.3.1.2 Constraint Programming 

As another commonly used approach to solve scheduling problems, CP has proven its applicability 

to a variety of scheduling problems, especially flexible job shops (Zhou 1996; Öztürk et al. 2013; 

Na and Park 2014). This CP model is based on high-level decision variables and constraints 

supported by IBM ILOG CP Optimizer for a concise code. A CP representation of the defined 

problem is as shown below. 

4.3.1.2.1 Decision Variables 

 𝐼𝑡𝑣𝑂𝑖𝑗 : interval variable for operation 𝑂𝑖𝑗  encapsulating a start time, end time, and 

processing time. 

 𝐼𝑡𝑣𝑜𝑝𝑡

𝑂𝑖𝑗,𝑘
 : optional interval variable for operation 𝑂𝑖𝑗  on machine 𝑘. 
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 𝐼𝑡𝑣𝑟𝑖 : interval variable for release time 𝑟𝑖  

4.3.1.2.2 Objective Function 

 Minimize ∑ 𝑤𝑖 × 𝑚𝑎𝑥(𝐸𝑛𝑑𝑜𝑓 (𝐼𝑡𝑣
𝑂𝑖𝑙(𝑖) ) − 𝑑𝑖 , 0)𝑖  

4.3.1.2.3 Constraints 

 Alternative(𝐼𝑡𝑣𝑂𝑖𝑗 , 𝐼𝑡𝑣𝑜𝑝𝑡

𝑂𝑖𝑗 ,𝑘
) ∀𝑖 ∈ 𝐽,  ∀𝑗 ∈ 𝑂𝑖,  ∀𝑘 ∈ 𝑀𝑗 

 EndBeforeStart(𝐼𝑡𝑣𝑂𝑖𝑗−1 , 𝐼𝑡𝑣𝑂𝑖𝑗) ∀𝑖 ∈ 𝐽,  ∀𝑗 ∈ 𝑂𝑖 − {𝑂𝑖𝑓(𝑖)
} 

 EndBeforeStart(𝐼𝑡𝑣𝑟𝑖, 𝐼𝑡𝑣
𝑂𝑖𝑓(𝑖) ) ∀𝑖 ∈ 𝐽 

4.3.1.3 Hybrid Genetic algorithm 

In this research, a hybrid genetic algorithm (HGA) with parallel variable neighborhood search 

(VNS) execution was implemented based on the work by Türkyılmaz and Bulkan (2015). The 

HGA parameters are based on the literature, and are summarized as shown in Table 4.1. 

Table 4.1 Parameters of HGA with parallel VNS 

Parameters Value 

Population size 500 

Number of iterations 200 

Number of no improvements 50 

Crossover probability 0.7 

Mutation probability 0.03 

VNS neighborhood size 20 

VNS parallel thread count 8 

 

4.3.2 Rule Learning with Data Transformation 

4.3.2.1 Data Transformation 

Scheduling decisions concerning the job to prefer in job sequencing may depend not on the 

separate attributes but the summation, difference, or multiplication of two or more attributes 

(Wnek and Michalski 1994). For example, various well-known dispatching rules, such as SPT 
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(Shortest Processing Time) and EDD (Earliest Due Date), are based on a comparison of such 

attribute values as processing times and due dates when determining the next job to process. Thus, 

the construction of new attributes by using comparison operators and arithmetic operators can 

explain why one job is dispatched ahead of another. 

 

 

Figure 4.2 Data generation for learning from a flat data file of schedules 

 

In the previous phase, the best solutions for each problem instance are saved as a flat data file, 

in which the columns represent separate data attributes and each row of the file represents a 

schedule of an operation. Based on a schedule list and its problem instance, a training dataset for 

sequencing operations and tie-breaking machines is generated by following three steps, as shown 

in Figure 4.2.  

First, the first operation in the schedule list is selected and all operations that can be processed 

at the start time of that operation are listed. Then, rows for all possible pairs of operations are 

appended to a dataset for sequencing operations by comparing the respective operations. Finally, 

rows for all possible pairs of alternative machines for the selected operation are appended to the 

training dataset for tie-breaking machines if there are more than two machines with the same 
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expected completion time. The expected completion time of machine 𝑘  is the sum of the 

completion time of the last operation assigned to machine 𝑘 and the processing time of the next 

operation in it. After completing these steps, the next operation in the schedule list is selected, and 

the three steps are repeated until the end of the list. 

When adding rows to two datasets for sequencing operations and tie-breaking machines, in 

addition to raw attributes of two operations or machines, other attributes based on those raw 

attributes are constructed and appended as new columns. The detailed raw and constructed 

attributes are summarized in Table 4.2. These attributes can be categorized by source and type. 
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Table 4.2 Raw and constructed attributes 

Source 
Attribute Type 

(Number of attributes) 
Attribute Description 

Sequencing 

operations 

Continuous raw 

attributes (10) 

Due date of O1, release time of O1, operation 

sequence of O1, end time of O1’s precedent 

operation, weight of O1, due date of O2, 

release time of O2, operation sequence of O2, 

end time of O2’s precedent operation, weight 

of O2 

Boolean constructed 

attributes (7) 

Whether O1’s due date is earlier than O2, 

whether O1’s release time is earlier than O2, 

whether the end time of O1’s precedent 

operation is earlier than O2, whether O1’s 

slack is shorter than O2, whether O1’s 

remaining time is shorter than O2, whether 

O1’s next processing time is shorter than O2, 

whether O1’s weight is greater than O2  

Continuous constructed 

attributes (7) 

Slack of O1, remaining processing time of O1, 

next processing time of O1, slack of O2, 

remaining processing time of O2, next 

processing time of O2, difference between due 

dates, difference between release times, 

difference between end times of precedent 

operations, difference between slack times, 

difference between remaining processing 

times, difference between next processing 

times, difference between weights 

Tie-

breaking 

machines 

Continuous raw 

attributes (10) 

End time of M1, processing time of M1, end 

time of M2, processing time of M2, end time 

of precedent operation of selected operation 

Boolean constructed 

attributes (2) 

Whether M1’s end time is earlier than M2, 

whether M1’s processing time is shorter than 

M2 

Continuous constructed 

attributes (2) 

Difference between end times, difference 

between processing times 
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4.3.2.2 Learning Dispatching Rules 

Based on the two datasets for sequencing operations and tie-breaking machines, two models are 

generated by using machine learning algorithms, which models constitute a dispatching rule: a 

model for sequencing operations (MSO) and a model for tie-breaking between alternative 

machines (MTM). A flowchart of the detailed procedure for scheduling with the MSO and MTM 

is shown in Figure 4.3.  

First, operations that can be processed at a particular point in time are sorted by the output 

classes of the MSO. For example, when an output class ‘GoFirst’ of the MSO is ‘Yes’, it means 

that Operation 1 tends to precede Operation 2; thus, Operation 1 earns one point. If there are four 

waiting operations to be processed, the next operation is determined by comparing all 4P2 possible 

permutations. By summing all points for these permutations, the operation with the largest number 

of points is selected.  

After selecting the next operation to be processed, one machine from all alternative machines 

is selected based on the expected completion time. Similarly to the process for sequencing 

operations, alternative machines for the selected operation are sorted by the total earned points by 

according to the output classes of the MTM when there are two or more machines with the same 

expected completion time. Based on the assignment of all operations in jobs to alternative 

machines, a detailed schedule and its performance are determined. 
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Figure 4.3 Flowchart of dispatching rule based on an MSO and MTM 

 

Through these procedures, a dispatching rule based on the MSO and MTM generates the 

detailed schedule as well as the total weighted tardiness. For generating the MSO and MTM, three 

approaches (C4.5, random forest without discretization, and RANFORS) were implemented and 

compared their performances (see Chapter 4.4.2). 

Figure 4.4 illustrates a decision tree of an MSO generated by the C4.5 algorithm; its maximum 

height is 5. The decision tree can also be expressed by a set of IF-THEN rules. In order to deal 

with continuous attributes such as due dates, a binary split with the maximum gain ratio for each 

attribute is performed. For example, in the case of the difference between due dates, a binary split 

at 25.5 results in the best gain ratio for given data. When the output class ‘GoFirst’ of the MSO is 

‘Yes’, it means that Operation 1 tends to precede Operation 2, according to the best solutions from 

the schedule generation phase.  
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Figure 4.4 Illustration of decision tree of MSO generated by C4.5 

4.3.3 Rule Improvement with Discretization 

In spite of the power of interpretability, decision-tree-based algorithms have some drawbacks such 

as over-fitting and binary splits. For example, as shown in Figure 4.4, decision trees use binary 

splits, which are less suitable for continuous attributes. Multi-interval discretization methods are 

known to produce more accurate decision trees than binary discretization (Perner and Trautzsch 

1998). Thus, to address these drawbacks, a new approach utilizes an evolutionary process to find 

the best multi-point splits and to tune parameters. 

RANFORS applies the random forests among ensemble methods, which combine multiple ML 

models to create more powerful models. A random forest consists of decision trees where each 

tree is different from the others. Based on the group of decision trees, an output is delivered by 

majority voting where each decision tree contributes a single vote and a random forest chooses the 

class having the most votes among the decision trees (Hall, Bowyer et al. 2000). For example, if 

more than 50 percent of decision trees produce ‘Yes’ for the output class ‘GoFirst’, the final output 

of the random forest is determined as ‘Yes’. 

To improve the average total weighted tardiness, a genetic algorithm is applied for searching 

of the best set of discretization strategies and parameters for a random forest. Each chromosome 

represents a specific number of classes for continuous attributes and parameters in an MSO and 
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MTM, as shown in Figure 4.5. These chromosomes act as individuals in a population, and their 

improvement occurs after the repeated application of reproduction, evaluation, and selection. 

 

 

Figure 4.5 Chromosome representation 

4.3.3.1 Discretization for Learning 

In the discretization process, the proposed approach uses the equal frequency method, which 

partitions the domain of the continuous attribute so that the sample frequency in each interval is 

approximately the same (Chmielewski and Grzymala-Busse 1996). Based on integer values in a 

chromosome, all continuous attributes in the training data are discretized. If the number of classes 

is 2, it uses the binary discretization of C4.5; otherwise, it discretizes continuous values in an 

attribute into a given number of classes.  

As shown in Figure 4.6, if the value of an attribute (the difference between due dates) is located 

between boundaries B1 and B2, it is discretized as class C2. The interval boundaries such as B1 

and B2 are determined so that each interval contains approximately the same number of instances. 

By discretizing all values in the continuous attribute into three classes (for example, C1 for low, 

C2 for medium, and C3 for high), decision trees in a random forest can have multi-point splits 

instead of a binary split. A new dispatching rule for the chromosome is then derived from an MSO 

and MTM, which are updated according to the discretized attributes and the parameters of the 

chromosome. 
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Figure 4.6 Discretization with equal frequency method 

4.3.3.2 Evaluation 

To evaluate the average performance of new dispatching rules, a set of problem instances for 

testing is generated with the same parameters of the training set at the beginning of every 

evaluation. Hence, problem instances in a testing set share parameters with the training set but they 

are different from those of the training set used in Chapter 4.3.2. The continuous attributes that 

were discretized for multi-point splits in a chromosome are categorized into the corresponding 

classes when sequencing operations and tie-breaking machines for scheduling with the updated 

MSO and MTM. After generating schedules with the dispatching rules for the testing set, the 

average total weighted tardiness is calculated. 

4.3.3.3 Selection 

To preserve the desirable characteristics of chromosomes for the next generation, the selection of 

surviving chromosomes is determined by the tournament selection method, and a fitness function 

represents the average total weighted tardiness. 

4.3.3.4 Reproduction 

To avoid local minima by preventing chromosomes from becoming too similar, mutation and 

crossover operators in the reproduction process are applied as shown in Figure 4.7. A mutation 

operator selects a position randomly in a chromosome and changes its value to a random number 
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between predefined lower and upper bounds. In the case of crossover, a two-point crossover 

operator that changes only the selected values between the two points is applied. 

 

Figure 4.7 Mutation and crossover operators for reproduction 

 Experimental Results 

In simulation experiments, two types of FJSP as training sets are considered: FJSP_10 (with 10 

jobs, five machines, and five operations) and FJSP_30 (with 30 jobs, 15 machines, and 10 

operations). Problem instances were randomly generated by using parameters from the method 

proposed by Brandimarte (1993). The due date of each job was specified by a date tightness 

parameter as in Tay and Ho (2008). The equation for generating due dates based on release times 

is 

𝑑𝑖 = 𝑟𝑖 + 𝑐 × ∑ �̅�𝑖𝑗

𝑛𝑖

𝑗=1

 (15) 

where �̅�𝑖𝑗  is the average processing time of operation 𝑗  of job 𝑖  among the set of alternative 

machines 𝑀𝑗 , 𝑐 is the tightness factor of the due date, 𝑛𝑖  is the number of operations of job 𝑖, and 

the release time of job 𝑖 (𝑟𝑖) is generated by 𝑈[0, ∑ �̅�𝑖𝑗
𝑛𝑖

𝑗=1 𝑛𝑖⁄  ].  
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All of the algorithms were coded in C#, and the experiments were run on an Intel Xeon E5-

1620 3.6 GHz processor with 16 GB of RAM. The detailed experimental parameters used to 

generate the problem instances are listed in Table 4.3. 

 

Table 4.3 Parameters for two training sets of problem instances: FJSP_10 and FJSP_30 

Parameter 
Value 

FJSP_10 FJSP_30 

Number of jobs 10 30 

Minimum and maximum numbers of operations per job 24 215 

Number of machines 5 15 

Maximum number of equivalent machines per operation 4 15 

Minimum and maximum processing times per operation 310 

Tightness factor of due date 1 1.2 

Number of problem instances  30 

 

4.4.1 Comparison between Solution Approaches in Schedule Generation 

To obtain the best solutions for learning, simulation experiments on 30 problem instances for each 

training set were performed and the average performance of the solution approaches described in 

Chapter 4.3 were compared. To solve the CP and MILP, IBM ILOG CP and CPLEX optimizer 

version 12.7.1 with default settings were used. The run time was limited to 3,600 seconds for the 

MILP and CP in order to compare their performances. The solutions obtained by the three 

approaches are compared in Tables 4.4 and 4.5. 

In summary, the comparison of the solution approaches for the two types of FJSPs indicated 

that MILP could find only a few optimal solutions for the small problem (FJSP_10), and could not 

find the optimal solution for the large problem (FJSP_30) under the same CPU time limit. The 

results also show that CP outperformed MILP and HGA in terms of the average total weighted 

tardiness.  

Although CP and MILP produce better performances than does HGA, they encounter some 

obstacles for complex problems in the real world. First, MILP merely finds feasible solutions for 

a large problem within a reasonable time. In the case of CP, continuous decision variables should 
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be approximated to integer variables by scaling up, because CP supports only integer decision 

variables (Bożek and Werner 2017). Thus, heuristic approaches such as HGA are more applicable 

for solving complicated problems efficiently. As shown in Figure 12, two sets of problem instances 

were used as a training set, and the best solutions for FJSP_10 and FJSP_30 were transformed into 

the learning data for the next phase. 
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Table 4.4 Experimental Results of the total weighted tardiness for two training sets 

Instance 

Number 

FJSP_10 FJSP_30 

MILP CP HGA MILP CP HGA 

1 106 95 165 238 134 442 

2 121 120 128 324 154 705 

3 98 91 117 186 132 395 

4 42 36 46 158 19 239 

5 8 7 15 587 339 1048 

6 42 41 59 469 261 609 

7 92 82 92 32 18 210 

8 71 66 94 522 317 883 

9 80 80 125 312 171 497 

10 73 72 95 170 49 345 

11 58 58 70 500 114 438 

12 30 30 56 321 99 477 

13 67* 67 99 319 77 415 

14 68 57 80 195 42 492 

15 39 39 46 256 100 424 

16 34 33 52 330 242 558 

17 30 28 35 316 65 396 

18 74 74 108 435 71 316 

19 150 150 185 515 381 840 

20 30 31 41 229 0 244 

21 64 61 82 353 235 756 

22 95 88 140 383 107 551 

23 80 72 122 498 221 854 

24 8 8 14 945 446 979 

25 3* 3 7 168 51 259 

26 45* 45 66 368 225 701 

27 94 93 110 102 6 441 

28 148 129 194 321 186 449 

29 44 37 77 580 390 909 

30 31 31 56 217 167 414 

Note: The optimal solutions are noted by an asterisk (*) and best feasible solutions are highlighted 

in bold. 

 

Table 4.5 Result summary for solution approaches with training sets 
 

FJSP_10 FJSP_30  
MILP CP HGA MILP CP HGA 

Average ∑ 𝑤𝑖𝑇𝑖  64.16 60.8 85.86 344.96 160.63 542.87 

Number of optimal solutions 3 0 0 0 0 0 

Average computation time (s) 3,600 3,600 204.9 3,600 3,600 1314.03 
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4.4.2 Comparison between Learning Algorithms 

In this section, the applicability and average performance of RANFORS were tested by using the 

learning data transformed from the best solutions for each training set. To compare the 

performances of the different inductive learning techniques, two decision tree algorithms, C4.5 

and Random Forest without a rule improvement phase, are also compared. Several pilot tests were 

run to choose the best parameters for C4.5 and Random Forest. To improve the generated 

dispatching rule through RANFORS, the computation times for the rule improvement phase were 

6.15 and 104.31 hours for FJSP_10 and FJSP_30, respectively. The detailed parameters of C4.5, 

random forest, and RANFORS are shown in Table 4.6. 

Table 4.6 Parameters of learning algorithms and RANFORS 

Algorithm Parameter Value 

C4.5 Maximum height of trees 10 

Random Forest 

Maximum height of trees 10 

Number of trees 3 

Sample ratio 0.8 

RANFORS 

Minimum and maximum height of trees [5, 10] 

Minimum and maximum number of trees [1, 5] 

Minimum and maximum sample ratio [0.5, 1.0] 

Minimum and maximum number of classes [2, 5] 

Population 500 

Number of generations 100 

Mutation rate 0.5 

Crossover rate 0.2 

Tournament size 5 

Number of problem instances for evaluation 60 

 

The results for each algorithm are summarized in Table 4.7. They show that the accuracy of 

the MSO in RANFORS was higher than in the other algorithms, whereas there was no significant 

difference among the computation times for FJSP_10. On the contrary, in terms of FJSP_30, there 

were no significant differences in accuracy, and even the computation times of the algorithms 

based on random forest slightly increased. In the case of the average total weighted tardiness, the 

result shows that RANFORS can find better dispatching rules with discretization, because the 

average total weighted tardiness of the training sets is smaller than the others. 
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One possible explanation for this result is that the number of rows in FJSP_30 was considerably 

larger, approximately 16 times larger in fact, compared with FJSP_10. An example of generated 

decision trees in a random forest for sequencing operations that were improved by RANFORS for 

FJSP_30 is shown in Figure 4.8. The decision tree contains discretized attributes highlighted in 

yellow, which have multiple branches determined by the rule improvement phase of RANFORS. 

 

Table 4.7 Summary of results of learning algorithms and RANFORS 

  FJSP_10  FJSP_30 

  MSO MTM  MSO MTM 

Computation time for 

training (s) 

C4.5 0.6 0.1  8.3 0.4 

Random Forest 0.6 0.3  16.6 1.3 

RANFORS 0.4 0.1  13.2 0.2 

Accuracy (%) 

C4.5 91.65 87.21  92.63 88.26 

Random Forest 93.21 89.4  92.56 88.52 

RANFORS 99.09 87.53  92.58 88.43 

Average ∑ 𝑤𝑖𝑇𝑖  

C4.5 263.83  2071.36 

Random Forest 208.3  1855.7 

RANFORS 200.56  1654.03 

 

 

 

Figure 4.8 Generated decision tree in MSO of RANFORS for FJSP_30 
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4.4.3 Comparison among Algorithms for Similar Types of Problem Instances 

In order to check the average performance for similar types of problem instances with the training 

data, three variations of problem instances for each size with different due-date-tightness levels 

were generated: 0.8 (tight), 1.0 (moderate), 1.2 (loose). Also, to validate the competitive 

performance of a dispatching rule leant by RANFORS, eight well-known dispatching rules that 

consider due dates or release dates for sequencing operations were implemented: EDD, MOD, 

MDD, Slack, ATC, COVERT, AT, and PT+WINQ+SL (Jeong and Kim 1998, Rajabinasab and 

Mansour 2011). The machine allocation for these dispatching rules was based on the earliest 

completion time with random tie-breaking. 

In addition to the average total weighted tardinesses, the relative deviation index (RDI) was 

applied to compare the relative performances of the dispatching rules with HGA. The RDI of the 

𝑘th experiment was calculated as shown in Equation (5) (Akhshabi, Tavakkoli-Moghaddam, and 

Rahnamay-Roodposhti 2014). The average total weighted tardiness, computation times, and RDIs 

of the dispatching rules and HGA over 30 problem instances for each due-date-tightness level are 

compared in Tables 4.9-10 and Figure 4.9. 

Among the dispatching rules, RANFORS outperformed the others in terms of the average total 

weighted tardiness for FJSP_10 and FJSP_30, which were similar to the training sets. In terms of 

relative performance, the results showed that, as the size of a problem increased, the overall relative 

performance of RANFORS became worse, but RANFORS still outperformed the other dispatching 

rules in that it yielded the smallest average RDI value for every case. 

4.4.4 Comparison among Algorithms for Different Types of Problem Instances 

In order to check the robustness of performance under more various conditions, two sets of larger 

problem instances were generated: FJSP_50 and FJSP_100. In addition, two types of experiments 

for FJSP_50 and FJSP_100 were designed: with different due-date-tightness levels and different 

flexibilities (Nie et al. 2013). For the larger problems, a dispatching rule learned from the learning 

data of FJSP_30 is used. The parameters used in the different types of problem instances are 

summarized in Table 4.8. 
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Table 4.8 Parameters for four test sets with different types of problem instances 

Parameter 
Value 

FJSP_50 FJSP_100 

Number of jobs 50 100 

Minimum and maximum numbers of operations per job 215 

Number of machines 15 

Maximum number of equivalent machines per operation 

(Flexibility; 𝑓) 
8 (𝑓=50%), 11 (𝑓=70%) 

Minimum and maximum processing times per operation 215 

Tightness factor of due date (𝑐) 0.8, 1.0, 1.2 

Number of problem instances  30 

 

4.4.4.1 Larger Number of Jobs with Different Due-date-tightness Levels 

In the case of FJSP_50 with different due-date-tightness levels, the dispatching rule of RANFORS 

still produced the lowest average total weighted tardiness, as shown in Table 4.11. By contrast, for 

the largest problems with 100 jobs, it could not always obtain the best performance in cases where 

the problem types deviate from the training sets (FJSP_100 with c=1.0 and c=1.2) as shown in 

Table 4.12 and Figure 4.10. Thus, the results showed that RANFORS can offer good performance 

for the larger number of jobs with different due-date-tightness levels compared with the others 

until the types of problem instances are too divergent from the training set. 

The results also indicated that, although HGA always finds the best schedules compared to the 

dispatching rules, the gap of the average computation time between HGA and the dispatching rules 

continued to broaden when the size of the problem increased. Thus, the dispatching rules, with 

their quicker computation speed, are more applicable in terms of scalability for extremely large 

problems in the real world. In addition, the development of efficient dispatching rules significantly 

improves the performance of heuristics when using them as an initial population of heuristics.  

4.4.4.2 Larger Number of Jobs with Different Flexibilities 

In the case of FJSP_50 and FJSP_100 with different flexibilities, the dispatching rule of 

RANFORS produced the lowest average total weighted tardiness, as shown in Tables 4.13 and 

4.14. In terms of relative performance, the results showed that RANFORS still outperformed the 
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other dispatching rules, in that it yielded the smallest average RDI value for every case, as shown 

in Figure 4.11. 

In summary, the simulation results demonstrated that the proposed RANFORS has an 

advantage over the other dispatching rules in terms of finding robust and good solutions for larger 

problem sizes, especially for problems that are similar to the training sets. In addition, RANFORS 

appears to find more generalized dispatching rules with discretization, because the average total 

weighted tardiness and RDI under different scenarios are smaller than the other algorithms without 

discretization. 
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Table 4.9 Average performances of dispatching rules over three test sets of FJSP_10 with different due-date-tightness levels 

 FJSP_10 

 𝑐 = 0.8 𝑐 = 1.0 𝑐 = 1.2 

 ∑ 𝑤𝑖𝑇𝑖 
Computation 

Time (s) 
RDI (%) ∑ 𝑤𝑖𝑇𝑖 

Computation 

Time (s) 
RDI (%) ∑ 𝑤𝑖𝑇𝑖 

Computation 

Time (s) 
RDI (%) 

HGA 168.63 205.17 0 87.57 200.93 0 56.83 211.06 0 

C4.5 332.17 <1 33.27 271.8 <1 31.61 220.27 <1 29.80 

Random Forest 301.73 <1 26.73 213.27 <1 21.36 160.27 <1 19.17 

RANFORS 290.4 <1 24.64 207.1 <1 20.29 138.73 <1 14.57 

EDD 447.83 <1 53.29 382.27 <1 48.66 367.07 <1 53.25 

MOD 396.97 <1 43.39 307.1 <1 36.49 235.0 <1 30.85 

Slack 408.63 <1 46.27 324.2 <1 41.07 246.9 <1 35.05 

ATC 651.03 <1 89.71 603.23 <1 88.64 597.87 <1 92.74 

COVERT 635.77 <1 85.94 556.23 <1 76.57 507.53 <1 75.48 

MDD 465.17 <1 58.19 417.07 <1 54.07 368.83 <1 53.38 

AT 459.9 <1 57.38 424.03 <1 53.99 384.93 <1 58.55 

PT+WINQ+SL 423.37 <1 49.52 421.17 <1 55.04 368.83 <1 53.39 

Note: Bold values indicate the best performances among the dispatching rules. 
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Table 4.10 Average performances of dispatching rules over three test sets of FJSP_30 with different due-date-tightness levels 

 FJSP_10 

 𝑐 = 0.8 𝑐 = 1.0 𝑐 = 1.2 

 ∑ 𝑤𝑖𝑇𝑖 
Computation 

Time (s) 
RDI (%) ∑ 𝑤𝑖𝑇𝑖  

Computation 

Time (s) 
RDI (%) ∑ 𝑤𝑖𝑇𝑖 

Computation 

Time (s) 
RDI (%) 

HGA 1245.17 1351.47 0 900.8 1413.87 0 569.23 1344.37 0 

C4.5 2806.93 <1 43.04 2710.6 <1 54.64 2400.83 <1 48.54 

Random Forest 2435.7 <1 33.03 2276 <1 40.49 2092.07 <1 40.86 

RANFORS 2254.93 <1 28.28 2069.7 <1 34.07 1807.8 <1 33.34 

EDD 2913.7 <1 45.38 2627.6 <1 51.20 2180.9 <1 44.21 

MOD 2911.4 <1 45.26 2462.13 <1 46.40 1921.63 <1 35.96 

Slack 2942.73 <1 47.64 2369.17 <1 43.78 1848.3 <1 34.81 

ATC 4090.57 <1 77.78 3745.27 <1 83.58 3738.2 <1 83.56 

COVERT 4269.17 <1 78.68 3441.9 <1 75.53 3195.4 <1 69.63 

MDD 3377.17 <1 57.02 2925.53 <1 60.03 2471.67 <1 51.77 

AT 4327.57 <1 83.76 3929.37 <1 86.75 3505.57 <1 79.01 

PT+WINQ+SL 2909.8 <1 45.40 2862.9 <1 56.67 2165.67 <1 43.23 

Note: Bold values indicate the best performances among the dispatching rules. 
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Table 4.11 Average performances of dispatching rules over three test sets of FJSP_50 with different due-date-tightness levels 

 FJSP_50 

 𝑐 = 0.8 𝑐 = 1.0 𝑐 = 1.2 

 ∑ 𝑤𝑖𝑇𝑖 
Computation 

Time (s) 
RDI (%) ∑ 𝑤𝑖𝑇𝑖 

Computation 

Time (s) 
RDI (%) ∑ 𝑤𝑖𝑇𝑖 

Computation 

Time (s) 
RDI (%) 

HGA 4506.63 2465.43 0 3920.13 2386.47 0 3127.63 2443.97 0 

C4.5 9385.67 <1 53.32 8559.07 <1 44.21 8169.73 <1 51.94 

Random Forest 8608.9 <1 45.02 7786.7 <1 36.64 7149.0 <1 40.70 

RANFORS 7391.47 <1 31.02 6994.33 <1 29.12 6192.57 <1 31.30 

EDD 8423.57 <1 42.47 8067.9 <1 38.48 7754.5 <1 47.80 

MOD 9204.87 <1 51.99 8512.6 <1 43.02 7303.67 <1 43.33 

Slack 8301.2 <1 42.48 7926.4 <1 35.22 6634.33 <1 36.83 

ATC 11646.33 <1 74.85 12370.9 <1 75.08 11528.67 <1 83.60 

COVERT 11303.97 <1 71.53 10608.9 <1 62.00 10097.5 <1 71.71 

MDD 9726.53 <1 56.48 9733.57 <1 54.75 8767.07 <1 57.69 

AT 12665.03 <1 86.56 13638.7 <1 87.92 11711.8 <1 85.44 

PT+WINQ+SL 9449.57 <1 54.34 9199.9 <1 48.31 7783.2 <1 46.30 

Note: Bold values indicate the best performances among the dispatching rules. 
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Table 4.12 Average performances of dispatching rules over three test sets of FJSP_100 with different due-date-tightness levels 

 FJSP_100 

 𝑐 = 0.8 𝑐 = 1.0 𝑐 = 1.2 

 ∑ 𝑤𝑖𝑇𝑖 
Computation 

Time (s) 
RDI (%) ∑ 𝑤𝑖𝑇𝑖  

Computation 

Time (s) 
RDI (%) ∑ 𝑤𝑖𝑇𝑖 

Computation 

Time (s) 
RDI (%) 

HGA 21771.8 3613 0 20609.37 3613.67 0 18479.73 3611.37 0 

C4.5 37979.7 <1 45.62 42372.27 <1 57.95 37843.23 <1 57.08 

Random Forest 34927.43 <1 37.28 35890.73 <1 40.41 33700.5 <1 44.38 

RANFORS 32821.13 <1 30.38 33883.63 <1 35.24 30763.57 <1 34.40 

EDD 35225.3 <1 37.22 33528.9 <1 34.61 31029.9 <1 36.37 

MOD 37938.43 <1 45.60 37063.47 <1 44.27 32772.47 <1 41.97 

Slack 38561.2 <1 47.59 33856.37 <1 35.18 27546.83 <1 25.39 

ATC 46153.7 <1 69.49 43716.5 <1 62.42 43760.8 <1 67.31 

COVERT 43200.77 <1 60.52 40515 <1 53.55 39974.6 <1 56.97 

MDD 41187.63 <1 55.85 41488.93 <1 56.11 37477.57 <1 55.67 

AT 55712.37 <1 91.71 55974.4 <1 90.34 52696.17 <1 92.61 

PT+WINQ+SL 45046.2 <1 62.86 42185.57 <1 55.70 35319.73 <1 46.83 

Note: Bold values indicate the best performances among the dispatching rules
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Table 4.13 Average performances of dispatching rules over three test sets of FJSP_50 with 

different flexibilities 

 FJSP_50 

𝑓 = 50% (𝑐 = 0.8) 𝑓 = 70% (𝑐 = 0.8) 

∑ 𝑤𝑖𝑇𝑖  
Computation 

Time (s) 
RDI (%) ∑ 𝑤𝑖𝑇𝑖  

Computation 

Time (s) 
RDI (%) 

HGA 3871.83 2757.33 0 3868.47 2839.03 0 

C4.5 8173.53 <1 48.66 7384.8 <1 38.96 

Random Forest 7020.97 <1 35.68 5923.1 <1 22.11 

RANFORS 6349.8 <1 27.70 5413.1 <1 16.58 

EDD 8103.4 <1 48.85 7732.93 <1 42.50 

MOD 8284.43 <1 50.68 8554.13 <1 51.07 

Slack 7031.8 <1 35.65 6247.53 <1 25.98 

ATC 11412.83 <1 83.68 12189.9 <1 90.99 

COVERT 10433.53 <1 72.69 11082.53 <1 78.48 

MDD 9364.3 <1 63.45 9659.37 <1 63.57 

AT 11071.63 <1 80.38 10035.67 <1 66.74 

PT+WINQ+SL 8708.5 <1 53.99 8464.27 <1 49.59 

Note: Bold values indicate the best performances among the dispatching rules. 

 

 

Table 4.14 Average performances of dispatching rules over three test sets of FJSP_100 with 

different flexibilities 

 FJSP_100 

𝑓 = 50% (𝑐 = 0.8) 𝑓 = 70% (𝑐 = 0.8) 

∑ 𝑤𝑖𝑇𝑖  
Computation 

Time (s) 
RDI (%) ∑ 𝑤𝑖𝑇𝑖  

Computation 

Time (s) 
RDI (%) 

HGA 20096.13 3614.2 0 19416.13 3615.8 0 

C4.5 35573.97 <1 45.57 31914.57 <1 40.53 

Random Forest 30151.4 <1 28.31 27433.83 <1 25.94 

RANFORS 28496.57 <1 23.79 24447.17 <1 16.33 

EDD 31458.57 <1 33.59 31127.4 <1 37.22 

MOD 35579.53 <1 45.56 35053.37 <1 50.13 

Slack 30186.87 <1 29.18 26053.2 <1 21.23 

ATC 45783.2 <1 74.90 46277.27 <1 85.12 

COVERT 44755.13 <1 69.47 42977.43 <1 74.87 

MDD 39610.77 <1 57.92 37093.63 <1 55.34 

AT 50548 <1 83.96 44697.67 <1 76.55 

PT+WINQ+SL 41310.67 <1 59.15 39884.8 <1 61.74 

Note: Bold values indicate the best performances among the dispatching rules.
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Figure 4.9 Average RDIs of dispatching rules for three test sets of FJSP_10 and FJSP_30 with 

different due-date-tightness levels. The best RDIs for each test set are noted by an asterisk (*). 
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Figure 4.10 Average RDIs of dispatching rules for three test sets of FJSP_50 and FJSP_100 with 

different due-date-tightness levels. The best RDIs for each test set are noted by an asterisk (*). 
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Figure 4.11 Average RDIs of dispatching rules for three test sets of FJSP_50 and FJSP_100 with 

different flexibilities. The best RDIs for each test set are noted by an asterisk (*).
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 Chapter Summary 

In this chapter, the FJSP with release times to minimize the total weighted tardiness is analyzed. 

This study proposes an approach called RANFORS that consists of three phases: schedule 

generation, rule learning with data transformation, and rule improvement with discretization. By 

analyzing scheduling data from the best solutions, dispatching rules were extracted as two random 

forest models that can be expressed in a set of decision trees or IF-THEN rules. To extract 

dispatching rules more effectively, a GA is designed to find parameters and discretize the 

continuous attributes while improving the performance and the generalizability of the learned 

results. The results of simulations showed that the new dispatching rule generated by RANFORS 

outperformed prevalent dispatching rules in terms of average performance and robustness, as it 

produced a smaller average total weighted tardiness and RDI values. 

The major contribution of this chapter is the development of a new approach for capturing both 

explicit and implicit knowledge from scheduling data. Furthermore, RANFORS can extract 

dispatching rules from both past production data and the best solutions through simulations. The 

results of this study indicate that RANFORS can be used to develop dispatching rules with less 

human intervention through the discovery of underlying logics that might not be realized by the 

schedulers themselves. Moreover, schedulers can modify the dispatching rules generated by 

RANFORS, because those rules are represented in such understandable formats as decision trees 

or rule sets. 
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CHAPTER 5. LOGISTICS WITH AUTONOMOUS ROBOTS 

 Introduction 

As shown in Chapter 2.4, considerable work relating to PF, VR, and CR has been done. However, 

consideration of all three sub-problems and their interconnections has been relatively neglected. 

Even though some approaches with task allocation, such as MAPD, have been researched, 

assumptions including single-load and simple task allocations may not be appropriate to deal with 

more complicated problems involving multi-load AMRs in practice. Also, in the case of VR, lack 

of consideration of conflicts between paths can cause unexpected delays due to deadlocks and 

collisions and thus can affect system performance significantly, especially when using many 

AMRs in a limited space. Finally, due to the inherent complexities of sub-problems, the centralized 

approach is not suitable for solving all three sub-problems within a reasonable time when scaling 

up.  

Thus, a comprehensive framework for scheduling and routing of AMRs is absolute necessary 

in order to tackle computational complexity and inherent interdependencies. The goal of this 

chapter is to address the optimization problems for minimizing total tardiness with consideration 

of the shortest paths and conflicts. The major contributions of this chapter can be summarized as 

follows: 

 In order to solve the sub-problems more efficiently, we propose a comprehensive approach 

for PF, VR, and CR that solves them by connecting the outputs for each. 

 The more generalized objective function, total tardiness, is considered for minimization 

of delays of transportation requests and thus optimization of material flow. 

 A PF framework for discretizing a map into grids and finding all required paths is 

suggested to consider obstacles as well as recharging during operations. 

 Regarding VR, a contextual-bandit-based algorithm is developed to optimize the selection 

process of local search operators for minimum human intervention. 

 In the case of CR, an agent-based model with a set of behaviors for resolving conflicts is 

designed. 
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 Problem Description 

All required information for logistics problems with AMRs consists of three datasets: map, AMRs’ 

status, and transportation requests. The map data includes work centers with loading/unloading 

stations and obstacles. Also, at the beginning of formulating a new operational plan, the current 

status for each AMR, such as includes location and remaining battery level, is updated. Finally, a 

set of transportation requests with two paired nodes (pickup and delivery) with due dates is given.  

Based on these datasets, optimization problems can be disintegrated into the three sub-

problems as shown in Figure 5.1. The objective function is to minimize the total tardiness, which 

is defined as the sum of all of tardiness values of transportation requests. The tardiness for each 

request is defined as max(completion time of delivery – due date, 0). The following sections 

elucidate the assumptions and characteristics for each sub-problem in this dissertation. 

 

 

 

Figure 5.1 Overview of three sub-problems for scheduling and routing of AMRs 
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5.2.1 Path Finding (PF) with Map Discretization 

The goal of PF is to identify the shortest paths considering obstacles between all possible locations 

including initial locations of all vehicles, loading/unloading (UL) stations, and recharging stations. 

In order to minimize computation time and guarantee the appropriate safety distances between 

AMRs, the grid-based approach that has been widely used in the previous literature is applied 

(Cirillo et al. 2014). A PF problem can be represented as a graph 𝐺, which contains a set of {𝑛𝑖} 

nodes and a set of arcs {𝑒𝑖𝑗}. For example, if an arc 𝑒𝑝𝑞  is an element of {𝑒𝑖𝑗}, it represents a 

directed line segment with the cost 𝑐𝑝𝑞  from node 𝑛𝑝 to 𝑛𝑞. An optimal path from 𝑛𝑖  to 𝑛𝑗  is a path 

having the smallest cost over the set of all paths from 𝑛𝑖  to 𝑛𝑗 . 

As shown in Figure 5.2, the map data is discretized with a given size of grids based on a layout 

of the shop floor. After discretizing the layout, the shortest paths between locations are pre-

calculated and stored for the other sub-problems (VR and CR). However, when the paths should 

be updated because of changes (e.g. new obstacles, additional transportation requests, breakdowns), 

new paths with consideration of those changes are newly calculated by solving PF again. 

 

 

 

Figure 5.2 Illustration of grid-based procedures for path finding 
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5.2.2 Vehicle Routing (VR) for AMRs 

In the case of VR for AMRs, the following assumptions are made in this dissertation: 

 Each AMR has a maximum payload, initial and maximum travel times, and speed. 

 Each transportation request having a due date and weight consists of two nodes: a node 

for picking up from one UL station and a node for delivery to another UL station. 

 While an AMR is travelling, the battery level decreases linearly with the distance; 

therefore, the AMR might need to visit the closest charging station between the pickup 

and delivery locations. The battery can be charged to any level, and the charging time 

depends on the recharging rate and the amount to be charged. 

 A required detour for charging is also considered; Figure 5.3 shows a comparison of paths 

with and without recharging. The brown areas represent obstacles such as pillars and other 

machines. In order to consider charging between operations, the required detours for 

charging are precalculated. The green paths in Figure 3 represent the detours between two 

nodes. 
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Figure 5.3 Illustration of paths with and without recharging in VR 

 

 

5.2.3 Conflict Resolution (CR) 

 

Figure 5.4 Types of conflicts between AMRs 
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As shown in Figure 5.4, conflicts between two AMRs in a grid space can be classified into two 

categories: collision and deadlock. Figure (a) and (b) represent collisions that occur when more 

than two AMRs are heading to the same node in different directions or when one AMR is going 

toward a node occupied by another AMR (Xue et al. 2017). 

In order to resolve those conflicts, Sun et al. (2014) proposed a collision-avoidance-behavior 

named WaitForGoThrough. Under this behavior, when the AMR of higher priority is detected, the 

AMR of lower priority must wait until the grid is freed. However, none of the AMRs can advance 

and all AMRs will be permanently blocked unless corrective action is taken. This situation is 

characterized as a deadlock (c) and, in current practice, deadlocks can be resolved by re-routing 

(Reveliotis 2000). 

 Proposed Approach 

In this section, a framework for scheduling of AMRs with consideration of PF, VR, and CR is 

proposed in streamlined procedures. In order to address all of the sub-problems, adaptive local 

search based on contextual bandits is incorporated into A* algorithm and ABM as shown in Figure 

5.5. In the following sections, the pre-processing of map and path finding with A* are first 

described. Based on the shortest paths, in order to assign AMRs to transportation requests 

efficiently, an efficient local search technique for improving the initial solution are explained. 

Finally, a decentralized approach based on ABM is proposed to identify expected delays caused 

by conflict resolution. 
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Figure 5.5 Overall framework of proposed approach 

 

5.3.1 PF with A* Algorithm 

A* algorithm, proposed by Hart (1968), is one of the best-known search algorithms for robotics, 

utilizing a heuristic function to accelerate the computation time. A* algorithm aims to find a path 

incurring the smallest cost over the set of all paths from a start node 𝑠 to a goal node. In order to 

determine the next node 𝑛 to extend at each iteration, A* selects the node that minimizes the 

evaluation function 𝑓(𝑛), which is calculated as follows: 

 

𝑓(𝑛) = 𝑔(𝑛) + ℎ(𝑛) (16) 

 

where 𝑔(𝑛) is the cost of the path from 𝑠 to 𝑛 with minimum cost (thus far found by A*), and 

ℎ(𝑛) is any estimate of the cost of an optimal path from 𝑛 to a preferred goal node of 𝑛. For the 

heuristic function ℎ(𝑛), various types of distances such as Manhattan, Euclidean or Chebyshev are 
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widely used. In this dissertation, Euclidean distance for ℎ(𝑛) and found the shortest paths between 

all possible locations is used. 

In addition to the standard A* algorithm, the Jump Point Search (JPS) method proposed by 

Harabor and Grastien (2011) was applied. By reducing the number of examined cells, JPS can 

accelerate the computation speed of A* algorithm. According to the previous literature (Duchoň  

et al. 2014), the experimental results of several scenarios for a mobile robot showed that JPS with 

A* algorithm was the best algorithm among all path finding algorithms in terms of computation 

speed. 

5.3.2 VR with Contextual-bandit-based Adaptive Local Search 

In this module, a dispatching rule for assigning AMRs to requests based on due dates is presented 

to generate a seed solution. In addition, a new local search algorithm called COBALT 

(COntextual-Bandit-based Adaptive Local search with Tree-based regression) is proposed 

whereby a seed solution is iteratively improved by choosing local search operators based on 

contextual bandits.  

5.3.2.1 Generation of Seed Solution 

First, a seed solution is generated by the dispatching rule based on due dates (Earliest Due Time; 

EDT) (Ho and Chien 2006). The EDT selects the transportation request having the earliest due 

date (NextRequest); then, the nearest vehicle to the pickup node of NextRequest is chosen. When 

recharging is required, AMRs need to visit the closest charging station, and they are charged to the 

full battery capacity for each recharging stop. The detailed procedures of the EDT are presented 

in Algorithm 3. 
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Algorithm 3: Earliest Due Time 

1: Obtain a list of requests, a list of vehicles 

2: do { 

3:        Initialise NextRequest and NextVehicle 

4:        NextRequest ← a request with the earliest due date in a list of unserved requests 

5:        NextVehicle ← the nearest vehicle to the pickup node of NextRequest 

6:        Serve pickup and delivery nodes with NextVehicle  

7:        Update the total tardiness and NextVehicle’s current location and completion time  

8: } while (unserved requests exist) 

5.3.2.2 Contextual-bandit-based adaptive local search 

Various local search techniques can be recognized for a decision problem in which a search 

operator must be chosen among candidate operators (Nareyek 2003). Local search operators for 

optimization problems can be classified into two categories: exploitation and exploration. 

Exploitation operators aim at converging quickly to a local optimum based on the seed solution, 

while exploration operators focus on increasing the diversity of the seed solution at the expense of 

the current local improvement. For balancing between exploitation and exploration, 

reinforcement-learning-based approaches have drawn considerable attention. Of the various 

reinforcement learning techniques, multi-armed bandit (MAB) is an emerging area of research and 

application, due specifically to its versatility. Goëffon et al. (2016) proposed a new model for 

simulating non-stationary operators in search algorithms that should alternate between exploitation 

and exploitation stages in their search processes.  

In general, the performance of local search algorithms largely depends on the characteristics 

of the problem’s search space and the designs of the search operators. Especially, learning from 

previous choices and improvements is necessary in order to develop an adaptive local search 

algorithm, because the context, which includes the seed solution and the problem instance, may 

have a huge impact on these two objectives. While much previous work relating to local search 

algorithms with MAB has been done, consideration of the context along with non-stationary 

rewards has been far less studied. Thus, to select the best operator with consideration of contexts, 

a new local search algorithm called COntextual-Bandit-based Adaptive Local search with Tree-

based regression (COBALT) is developed. 
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5.3.2.2.1 Design of Local Search Operators 

In the process of COBALT, a set of neighborhoods is generated repeatedly by choosing and 

applying a chosen local search operator on the current seed solution. To improve the initial solution 

produced by EDT, four operators based on the previous literature that are widely used in various 

local-search techniques for the PDP were implemented (Li and Lim 2003; Cherkesly et al. 2015; 

Li et al. 2016). These local search operators are designed to improve the expected tardiness without 

consideration of conflicts between routes. After finding the best neighborhood solution, the current 

seed solution is updated according to the best one, and the entire process is repeated up to the 

maximum computation time. 

 

 

Figure 5.6 Inter-route relocation and exchange 
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Figure 5.7 Intra-route relocation and exchange 

 

Inter-route Relocation 

In inter-route relocation, two AMRs and a pair of nodes from one AMR are randomly selected and 

the inter-route relocation returns the best solution among neighborhoods that are generated by 

inserting the removed nodes from an AMR to all possible insertion points to another AMR. Figure 

5.6 (a) explains an inter-route relocation whereby the pickup and delivery nodes of request 4 are 

inserted into another AMR.  

 

Inter-route Exchange 

The inter-route exchange operator removes two pickup and delivery nodes from each AMR and 

exchanges their positions between AMRs. Figure 5.6 (b) illustrates an inter-route exchange 

whereby the pickup and delivery nodes of requests 4 and 5 are exchanged with each other.  

 

Intra-route Relocation 

The intra-route relocation first chooses an AMR and a transportation request randomly and inserts 

nodes for the transportation request into random positions. Figure 5.7 (a) depicts an intra-route 

relocation whereby a delivery node and a pickup node of request 6 are relocated. This operator is 

repeated 10 times to make neighborhoods and returns the best solution among them. 
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Intra-route Exchange 

The locations of the two pickup and delivery nodes in a randomly chosen AMR are exchanged for 

the same vehicle. Figure 5.7 (b) shows an intra-route exchange whereby nodes of request 3 and 

nodes of request 4 are exchanged. The intra-route exchange operator selects a number of two 

transportation requests (set as 10) randomly, exchanges them, and returns the best solution among 

those changes. 

5.3.2.2.2 Selection of Operators based on Contextual Bandit 

In COBALT, the seed solution is continuously improved in every trial t by observing a current 

context, choosing a local search operator, and replacing the seed solution with a better solution of 

a new neighborhood of the chosen operator. Using an M-dimensional context vector 𝑥𝑡 ∈ ℝ𝑀 as 

input, the algorithm chooses one of 𝐾 possible  local search operators at trial t. 𝑥𝑡 contains various 

features of the current solution and factors that may affect the improvement of operators. In this 

dissertation, cumulative improvement, previous improvement, previous operator, current total 

tardiness, total distance, average distance, and number of requests were used. 𝑎𝑡 ∈ {1, … , 𝐾} 

denotes the chosen operator at trial t by the algorithm. Let 𝐹0  and 𝐹𝑡  and denote the total 

tardinesses of the seed solution at the beginning and trial t, respectively. After checking the total 

tardiness of the best neighborhood solution, the reward 𝑟𝑡,𝑎𝑡
 associated with the chosen operator 

𝑎𝑡 and context 𝑥𝑡 can be observed as shown below. 

𝑟𝑡,𝑎𝑡
= 1 −

𝐹𝑡

𝐹0
− ∑ 𝑟𝑡,𝑎𝑡

𝑡−1

𝑡=1

 (17) 

The reward 𝑟𝑡,𝑎𝑡
 represents the improvement by choosing 𝑎𝑡 at trial t excluding the previous 

improvements. The entire selection process is repeated until a termination condition is met. In this 

dissertation, the maximum computation time (600 seconds) is used as the termination condition 

considering the required times for the other sub-problems (PF and CR). 

To address the contextual bandit problem for choosing an operator, McNellis et al. (2017) 

proposed a practical method with bootstrapping and decision trees, which are non-parametric and 

interpretable. The detailed procedures are presented in Algorithm 4. 
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Algorithm 4: COBALT-C() 

1: do { 

2:    Observe context vector 𝑥𝑡 

3:    for a = 1, …, K do 

4:       Sample bootstrapped dataset �̃�𝑡,𝑎 from 𝐷𝑡,𝑎 

5:       Fit decision tree 𝜃𝑡,𝑎 to �̃�𝑡,𝑎 with CART algorithm 

6:    End 

7:    Choose action 𝑎𝑡 = 𝑎𝑟𝑔 max
𝑎

�̂�(𝜃𝑡,𝑎, 𝑥𝑡) 

8:    Generate a set of neighborhood solutions based on 𝑎𝑡 and observe 𝑟𝑡,𝑎𝑡
 

9:    Update 𝐷𝑡,𝑎 with (𝑥𝑡 , 𝑟𝑡,𝑎𝑡
) and t ← t + 1 

10: } while (the termination condition is not met) 

 

In Algorithm 4, 𝐷𝑡,𝑎 is the set of observations for action at trial t, and �̃�𝑡,𝑎 denotes the dataset 

obtained by bootstrapping 𝐷𝑡,𝑎. 𝜃𝑡,𝑎 is a decision tree fit on a given dataset, and �̂�(𝜃𝑡,𝑎, 𝑥𝑡) means 

the estimated probability of reward from using decision tree 𝜃𝑡,𝑎 in context 𝑥𝑡. In addition to 

COBALT-C, an ensemble model of boosted regression trees, namely Multiple Additive 

Regression Trees (MART), is also considered to compare the performances with and without 

bootstrapping (COBALT-M). MART is widely used in practice due to its high prediction accuracy 

for various applications (Vinayak and Gilad-Bachrach, 2015). The main steps of local search with 

MART are summarized in Algorithm 5. 

 

Algorithm 5: COBALT-M() 

1: do { 

2:    Observe context vector 𝑥𝑡 

3:    for a = 1, …, K do 

4:       Fit decision tree 𝜃𝑡,𝑎 to 𝐷𝑡,𝑎 with MART algorithm 

5:    end 

6:    Choose action 𝑎𝑡 = 𝑎𝑟𝑔 max
𝑎

�̂�(𝜃𝑡,𝑎, 𝑥𝑡) 

8: Generate a set of neighborhood solutions based on 𝑎𝑡 and observe 𝑟𝑡,𝑎𝑡
 

9:    Update 𝐷𝑡,𝑎 with (𝑥𝑡 , 𝑟𝑡,𝑎𝑡
) and t ← t + 1 

10: } while (the termination condition is not met) 
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5.3.3 CR with agent-based modeling 

In order to check the actual tardiness considering conflicts and delays, a decentralized approach 

for resolving conflicts between routes with agent-based modeling (ABM) was implemented. The 

basic idea of agent-based simulation is the implementation of autonomous functional units that 

communicate using dedicated protocols and cooperate to solve complex tasks. In this dissertation, 

an agent refers to an autonomous robot with embedded behaviors for conflict resolution that can 

be expressed by a flow chart as shown in Figure 5.8. The protocols and states are based on the 

work of Zhao et al. (2015) and Draganjac et al. (2016). 

 

 

Figure 5.8 Summary of protocols and states between AMRs for CR 
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5.3.3.1 Collision Resolution 

 

Figure 5.9 Collision avoidance with prioritizing and waiting 

 

When a collision between AMRs is anticipated, it can be easily resolved by prioritizing AMRs and 

applying a simple wait-and-move strategy for the AMRs other than the one having the highest 

priority. Figure 5.8 represents the wait-and-move strategy with prioritization by exchange of 

messages. 

5.3.3.2 Deadlock Resolution 

 

Figure 5.10 Deadlock resolution by updating route 

 

Unlike collisions, in the case of deadlocks, the wait-and-move strategy cannot offer any resolution, 

because a deadlock occurs when an AMR is waiting for a grid occupied by another AMR to be 
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cleared. Thus, in order to resolve the deadlock, AMRs are prioritized according to the earliest due 

date, and the route of an AMR having a lower priority is updated as shown in Figure 5.10. 

 Experimental Results 

5.4.1 Experimental Design 

The approach proposed in Chapter 5.3 was tested via simulation experiments. To evaluate and 

compare the performances of the proposed approach, 6 scenarios of 30 problem instances with 

different numbers of transportation requests (50, 60, 70, 80, 90, and 100) were designed. Each 

problem instance contained a set of transportation requests along with AMRs on a map with work 

centers, UL stations, and obstacles. Also, to validate the competitive performances among 

metaheuristics, two evolutionary algorithms that have been widely used were implemented: simple 

genetic algorithm (SGA) and neighborhood search (NS). Several pilot tests were run to choose the 

best parameters for the SGA. The initial population for the SGA was generated by adding a 

solution using the EDT, as well as randomly generated solutions for the population diversity. In 

the case of NS, all four operators in Chapter 5.3.2.2.1 were used to generate a set of neighborhoods.  
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Table 5.1 Parameters for generation of problem instances 

Parameter Value 

Map width (meters) 500 

Map height (meters) 300 

Grid size 1 × 1 m2 

Number of AMRs 10 

Number of work centers 20 

Range of width and depth for work centers (meters) [10, 20] 

Number of obstacles 30 

Range of width and depth for obstacles (meters) [3, 10] 

Neighborhood type of A* Moore 

Heuristic function of A* Euclidean 

Range of due dates (hours) [0.01, 0.5] 

Range of weights for transportation requests (kg) [1, 5] 

Service time (hours) 0.005 

Vehicle speed (km/h) 4 

Recharge time from empty to full (hours) 3 

Maximum payload (kg) 100 

Maximum travel time (hours) 9 

 

 

Table 5.2 Parameters for VR algorithms 

Algorithm Parameter Value 

COBALT-MART 

Number of trees 100 

Number of leaves 20 

Minimum number for leaf 10 

Learning rate 0.2 

COBALT-CART Maximum tree height 10 

SGA 

Population size 500 

Crossover rate 0.25 

Mutation rate 0.55 

Number of survivors 100 

Tournament size 5 
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The maximum computation time of all of the algorithms in VR was determined to be 10 

minutes for prompt reflection of shop floor changes. All of the algorithms were coded in C# (for 

A* and COBALT) and AnyLogic (for ABM) and executed on an Intel Xeon E5-1620 3.6 GHz 

processor with 16 GB RAM. Tables 5.1 and 5.2 present the data relevant to the experimental design 

parameters used in this dissertation.  

5.4.2 Results and Discussion 

The minimum, maximum, and average total tardinesses of all of the algorithms for the 30 problem 

instances for each scenario are compared in Tables 5.3 and 5.4. In addition to the total tardiness, 

the relative deviation index (RDI) was used to compare the relative performances of the algorithms. 

The RDI of the 𝑘th experiment was calculated using Equation (5). Additionally, the average RDIs 

for the respective test sets are plotted in Figure 5.14. 

In the case of PF, as shown in Figure 5.11, A* with JPS could find the shortest paths between 

all possible locations with consideration of obstacles. The average computation time largely 

depended on the size of the problem instances: from 552.98 (with 50 transportation requests) to 

1944.79 (with 100 transportation requests) seconds. Although the A* with JPS took a significant 

amount of computation time initially, the computation time for the upcoming transportation 

requests could be greatly reduced by recalculating only the shortest paths between newly added 

locations. 

After finding the shortest paths from PF, the total tardiness is improved by solving VR, and 

CR finalizes the delays caused by waiting and detouring. In order to illustrate the routes of AMRs 

by solving VR, Figure 5.12 represents the solutions of the EDT for the problem instances of Figure 

5.11. Based on a given solution from VR, as shown in Figure 5.13, ABM in CR could resolve 

conflicts between routes (highlighted in red) in a decentralized way and estimate the actual total 

tardiness considering delays. Also, the results in Table 5.3 show that the number of conflicts 

increased as the performance of solutions was improved. One possible explanation for this result 

is that, due to the improved efficiency of schedules, the shortest routes became overlapped more 

frequently within a short period and thus more conflicts happened, similarly to the case of traffic 

jams during peak times. In checking the actual total tardiness with ABM in CR, the average 

computation time was 160.74 seconds for all sizes of problem instances.  
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Also, in order to identify the delayed times caused by conflicts and their impacts on 

performance, a sensitivity analysis was conducted by using EDT. The number of conflicts 

(collisions and deadlocks) and tardiness are summarized in Table 5.5 and Figure 5.15. The results 

indicated that the number of conflicts increased while the average tardiness reduced significantly 

when the number of AMRs increased.  

Among the VR algorithms, NS outperformed the others in terms of average total weighted 

tardiness and RDI for smaller problems (with 50, 60, and 70 transportation requests). However, 

the results showed that, as the size of a problem increased, the overall performance of NS worsened 

while that of COBALT-C improved relative to the smaller problems. In the case of COBALT-M, 

the results indicated that it can offer robust performance regardless of the size of problem instances. 

In terms of the average performance for all sizes of problem instances, the results showed that the 

COBALT algorithms outperformed SGA and NS, in that they yielded the smallest average total 

tardiness and RDI values. In summary, the simulation results demonstrated that the proposed 

COBALT-M has an advantage over NS and SGA in terms of finding robust solutions, and that 

COBALT-C appears to find good solutions, especially for larger problems. 
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Figure 5.11 Illustration of shortest paths produced by A* with JPS. The purple and brown 

rectangles indicate work centers and obstacles, respectively. The green lines represent detouring 

paths for recharging, and the brown lines represent paths for serving of requests. 

 

Figure 5.12 Illustration of routes for each AMR produced by EDT. Each AMR’s route is 

differentiated by color, and its initial location is denoted as a circle. 
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Figure 5.13 Screenshot of ABM simulation for conflict resolution. The grids wherein conflicts 

happened are highlighted in red. 

 

 

 

 

Figure 5.14 Average RDIs of algorithms for six test sets of problem instances with different 

numbers of transportation requests 
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Table 5.3 Average performances of VR algorithms for 30 problem instances with different 

numbers of transportation requests 

Number of 

requests 
Algorithms 

∑ 𝑇𝑖  

without CR 

∑ 𝑇𝑖  with 

CR 

Number of 

collisions 

Number of 

deadlocks 

RDI 

(%) 

50 

EDT 4.44 4.48 8.93 2.6 100 

SGA 2.76 2.83 8.17 6.43 53.76 

NS 0.95 0.99 7 10.67 0.38 

COBALT-C 1.67 1.75 7.97 8.2 23.62 

COBALT-M 1.25 1.33 8 9.87 9.99 

60 

EDT 9.03 9.08 7.73 2.77 100 

SGA 5.97 6.12 8.67 8 56.29 

NS 2.34 2.52 9.53 15.33 2.45 

COBALT-C 2.81 2.98 10.63 14.07 8.88 

COBALT-M 2.69 2.86 10.9 13.63 7.13 

70 

EDT 13.73 13.82 11.2 2.97 100 

SGA 9.43 9.66 12.83 10.83 56.15 

NS 4.45 4.76 12.6 18.03 4.51 

COBALT-C 5.43 5.68 12.3 15.9 15.04 

COBALT-M 4.67 4.99 12.53 16.33 7.01 

80 

EDT 20.27 20.4 10.13 4.13 100 

SGA 14.46 14.76 13.23 12.43 53.55 

NS 9.23 9.63 14.87 17.7 11.05 

COBALT-C 9.17 9.54 18.67 16.23 11.2 

COBALT-M 8.67 9.1 15.47 17.03 6.84 

90 

EDT 27.09 27.3 15.17 4.67 100 

SGA 20.14 20.69 15.23 14.8 53.17 

NS 15.32 15.93 19.47 16.67 20.07 

COBALT-C 13.38 14.01 17.93 17.27 6.66 

COBALT-M 13.77 14.44 19.53 17.37 8.62 

100 

EDT 36.46 36.69 15 4.37 100 

SGA 27.97 28.64 20.83 15.03 46.76 

NS 25.77 26.35 19.73 12.73 31.11 

COBALT-C 21.25 21.94 18.77 14.7 1.86 

COBALT-M 22.32 22.95 20.13 14.57 8.38 

Total 

EDT 18.5 18.63 11.36 3.59 100 

SGA 13.46 13.78 13.16 11.25 53.28 

NS 9.68 10.03 13.87 15.19 11.6 

COBALT-C 8.95 9.32 14.38 14.4 11.21 

COBALT-M 8.9 9.28 14.43 14.8 8 
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Table 5.4 Result summary of all algorithms for 30 problem instances with different numbers of 

transportation requests 

 50 60 70 80 90 100 

EDT 

Max. 7.12 12.17 16.75 23.63 33.08 42.32 

Min. 2.82 5.75 11.45 15.92 20.61 29.26 

Avg. 4.48 9.08 13.82 20.4 27.3 36.69 

S.D. 1.2 1.67 1.34 1.72 2.92 3.01 

SGA 

Max. 4.51 8.05 12.16 17.89 26.59 34.29 

Min. 1.86 3.96 7.59 10.52 15.53 22.64 

Avg. 2.83 6.12 9.66 14.76 20.69 28.64 

S.D. 0.72 1.11 1.05 1.51 2.66 2.94 

NS 

Max. 1.46 4.03 6.43 11.57 20.15 31.7 

Min. 0.35 1.0 3.1 7.14 12.34 20.38 

Avg. 0.99 2.52 4.76 9.63 15.93 26.35 

S.D. 0.32 0.72 0.8 1.02 1.86 2.66 

COBALT-

C 

Max. 2.71 6.96 9.46 12.55 18.62 28.16 

Min. 0.97 1.1 2.9 5.72 10.83 16.94 

Avg. 1.75 2.98 5.68 9.54 14.01 21.94 

S.D. 1.75 2.98 1.71 1.85 1.89 2.57 

COBALT-

M 

Max. 2.79 5.02 6.81 11.27 18.12 27.92 

Min. 0.69 1.34 3.29 6.79 9.94 16.51 

Avg. 1.33 2.86 4.99 9.1 14.44 22.95 

S.D. 0.47 0.82 0.82 1.23 2.02 2.45 

 

 

Figure 5.15 Average delayed times caused by conflicts and average numbers of deadlocks and 

conllisions with different numbers of AMRs and transportation requests 
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Table 5.5 Sensitivity analysis on different numbers of transportations requests and AMRs 

Number of 

requests 

Number of 

AMRs 

∑ 𝑇𝑖  

without CR 

∑ 𝑇𝑖  with 

CR 

Number of 

collisions 

Number of 

deadlocks 

50 

10 2.89 2.86 1.83 7.2 

20 0.46 0.45 2.33 16.77 

30 0.47 0.46 3.9 20.57 

40 0.44 0.43 3.63 25.83 

50 0.44 0.44 4 36.1 

60 0.42 0.41 3.33 37.67 

60 

10 7.42 7.37 1.93 7.6 

20 0.57 0.55 3.5 17.27 

30 0.43 0.43 4.47 23.1 

40 0.45 0.44 5.26 35 

50 0.44 0.43 4.83 46.9 

60 0.44 0.44 5.77 42.6 

70 

10 12.85 12.77 3.2 9.03 

20 1.85 1.82 5.1 24.07 

30 1.22 1.21 7.57 31.73 

40 1.16 1.15 7.93 41.83 

50 1.17 1.15 11.2 53.3 

60 1.2 1.18 9.17 61.83 

80 

10 21.16 21.06 3.06 11.93 

20 3.74 3.66 7.63 27.27 

30 1.57 1.55 7.6 33.47 

40 1.32 1.3 8.77 43.27 

50 1.31 1.28 9.8 63.53 

60 1.31 1.29 9.9 78.67 

90 

10 26.23 26.11 2.9 10.57 

20 3.82 3.71 6.47 28.03 

30 1.37 1.35 6.83 35.2 

40 1.31 1.3 9.5 55.27 

50 1.33 1.3 9.67 81.13 

60 1.29 1.27 11.27 61.8 

100 

10 36.54 36.27 4.73 15.63 

20 8.42 8.17 8.77 28.77 

30 1.76 1.69 9.93 43.9 

40 1.22 1.18 11.57 54.4 

50 1.16 1.13 12.8 71.27 

60 1.13 1.11 11.8 88.43 
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 Chapter Summary 

In this chapter, the three sub-problems (PF, VR, and CR) for scheduling and routing of AMRs are 

identified to minimize the total tardiness of all transportation requests. In order to solve the defined 

sub-problems practically, this study proposes a comprehensive framework that is based on three 

different solution approaches: A* with JPS, COBALT, and ABM. Especially, in the proposed 

COBALT, for the exploration and exploitation of near-optimal solutions, a tree-based regression 

algorithm was utilized to select the best operator with consideration of contexts. The ABM is also 

designed for resolving collisions and deadlocks and checking delays caused by them in a 

decentralized way. With simulation experiments under various numbers of requests, the proposed 

framework is evaluated compared to other heuristics (SGA and NS) with regard to the average 

total tardiness and RDI. 

The major contributions of this study are the development of (1) a comprehensive framework 

for solving PF, VR, and CR, (2) a contextual-bandit-based optimization algorithm for VR, and (3) 

a decentralized and agent-based model with a set of behaviors for CR. Beyond traditional AGVs, 

the introduction of AMRs for material handling can enable factories and warehouses to function 

as more intelligent and flexible systems. Given AMRs’ great potentials, their adoption should be 

accelerated.  

  



 

111 

 

CHAPTER 6. CONCLUSION AND FUTURE RESEARCH  

This dissertation analyzed optimization problems for scheduling and routing with ML applications 

in manufacturing systems. Due to the inherent complexity of those problems, there is a significant 

need for discovering efficient solution approaches automatically with minimization of 

computation time and human intervention. In this vein, the proposed ML approaches based on DTs 

or reinforcement learning can help systems make better decisions while considering various 

environments.  

In this dissertation, two scheduling problems (the SMSP and FJSP) that have been widely used 

in practice are studied. The proposed GRAFT and RANFORS can extract DRs as a set of IF-THEN 

rules from given schedules and produce high and robust performance by using an automatic 

process for discovering the best combination of parameters and attributes. These approaches can 

cover a variety of scheduling problem in manufacturing systems from a single machine to parallel 

machines with complicated sequences of operations. 

 In addition to the scheduling problems, this study identified sub-problems for scheduling 

and routing of AMRs and their interdependencies. In order to tackle computational complexity 

and inherent interdependencies, a comprehensive framework with three different solution 

approaches (A* with JPS, COBALT, and ABM) for each sub-problem. Especially in COBALT, 

in order to balance the exploration and exploitation, this study addresses a contextual bandit, which 

is an extension of multi-armed bandits that is a classic example of reinforcement learning. 

Finally, this dissertation identifies various directions for future work in the following. 

 Single-Machine Scheduling Problem 

In the SMSP, the following directions are interesting and worthy of further investigation. First, in 

order to deal with more complex scheduling problems having multiple machines, applications of 

GRAFT to flow shops and job shops are interesting and worthy of investigation, especially for 

verification of the proposed algorithm’s performance under various environments. Additionally, 

various objective functions such as minimization of earliness and tardiness can be studied. Finally, 

discretization of continuous attributes used in Chapter 4 can be supplemented to the proposed 

GRAFT for consideration of its potential effects. 
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 Flexible Job Shop Scheduling Problem 

Future work for Chapter 4 will proceed in the following directions. First, the RANFORS re-

initiation process could be used for adaptation to system-behavior-based changes such as resource 

configuration variation and dynamic performance fluctuation. For example, if the difference  

between the training set and the recent set deviates beyond a certain threshold, the learned 

dispatching rule might be replaced with one newly generated to deal with the recent problems. 

Additionally, the proposed algorithm could be applied to other types of scheduling problems such 

as hybrid flow shop scheduling problems. Furthermore, dynamic environments, such as stochastic 

processing times or machine breakdown, also are interesting and worthy of future investigation. 

 Logistics with Autonomous Robots 

The proposed framework covers the entire control problem for AMRs, and thus assumed the 

required information to be known in advance. However, unexpected changes such as newly added 

transportation requests and unexpected delays may be occurred according to uncertainties on the 

shop floor. Thus, in order to deal with those uncertainties, the proposed framework can be validated 

with a new set of problem instances from the real world. In addition, due to the NP-hard nature of 

VR, the development of automated approaches to the understanding of underlying decisions from 

best solutions with scalable inputs is worthy of further research. Due to similarities between VR 

and scheduling problems, the ML approaches used for scheduling problems such as GRAFT and 

RANFORS can be applied to PDP effectively (Kouki et al. 2007). 
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