
AN EXPERIMENTAL FAST APPROACH OF SELF -COLLISION

HANDLING IN CLOTH SIMULATION USING GPU

by

Jichun Zheng

A Thesis

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Master of Science

Computer Graphics Technology

West Lafayette, Indiana

May 2021

2

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF COMMITTEE APPROVAL

Dr. David M. Whittinghill

Department of CGT

Dr. Tim McGraw

Department of CGT

Dr. Christos Mousas

Department of CGT

Approved by:

Dr. Nathan W. Hartman

3

This thesis is dedicated to my parents and aunt. Sincere thanks for all the support you gave me.

4

ACKNOWLEDGMENTS

First of all, thanks to Dr. Tim McGraw and Dr. Bedrich Benes from whom I learned all

the computer graphics knowledge. Also, thanks to my advisor Dr. David M. Whittinghill for his

suggestions to this thesis. Thanks to Dr. Christos Mousas, Prof. Raymond P. Hassan, and Prof.

Nasheet Zaman for hiring me as their TA, a great relief to my economic pressure so that this

thesis is possible. Finally, thanks my best friends Xiao, Yucong, Yuanpei, Yiyun, and Zhiquan

for all the help they give me when I was confused.

5

TABLE OF CONTENTS

LIST OF TABLES .. 7

LIST OF FIGURES .. 8

LIST OF ABBREVIATIONS ... 10

ABSTRACT .. 11

CHAPTER 1 PROBLEM AND PURPOSE ... 12

Introduction .. 12

Problem Statement ... 13

Purpose Statement .. 14

Research Question ... 14

Significance.. 14

Deliverable ... 15

Definition of Terms.. 15

Assumptions ... 17

Specification of Experiment Environment .. 17

Physical Model .. 17

Delimitation ... 18

Cloth-object Collision .. 18

Friction ... 18

Limitations ... 18

Downside of CUDA .. 18

Limited Time Step ... 18

Evaluation of Visual Effects .. 19

CHAPTER 2 REVIEW OF LITERATURE ... 20

Mass Spring Model .. 20

Large Timestep .. 22

Past Related Works .. 23

GPU-Based Incremental Collision Handling ... 23

Virtual Marble Technique .. 25

Bounding Volume Hierarchy ... 26

6

Ray-traced Collision Detection .. 29

Bounding Sphere Hierarchy .. 30

Spatial Hashing Combined with Bounding Sphere ... 33

CHAPTER 3 METHODOLOGY ... 36

A Modification to Mass Spring Model .. 36

The Fast Approach of Cloth-cloth Collision .. 39

Virtual Sphere .. 39

Spatial Hashing .. 39

Workflow ... 42

Implementation and Configuration .. 43

Ping-pong Buffer ... 43

Continuous Collision Detection ... 44

Overall Application ... 47

CHAPTER 4 PERFORMANCE AND CONCLUSIONS .. 49

Output .. 49

Performance ... 49

Conclusion ... 56

Future Works ... 57

Optimizing Memory Consumption .. 57

Dynamic Spatial Hashing .. 58

APPENDIX SOURCE CODE .. 59

Fast approach self-collision detection .. 59

Kernel Function of Cloth Computation ... 60

Mass Spring Model .. 61

Continuous Collision Detection ... 61

REFERENCES ... 62

7

LIST OF TABLES

Table 1. Specifications of the computer on which the method will be implemented. 17

Table 2. A lookup table to ensure all the triangle pairs are tested in a constant sequential order. 34

Table 3. Performance of the output of the self-collision method ... 50

Table 4. Performance of running self-collision detection with brute force search with the same

increase step of vertex amount. ... 52

Table 5. Memory consumption of the implementation ... 54

8

LIST OF FIGURES

Figure 1 Overview of all types of constraints. .. 21

Figure 2. On the left is a cloth with high spring constant, on the right is the one with low spring

constant. .. 22

Figure 3. Process of incremental collision handling. .. 24

Figure 4. Each vertex is set up with a virtual marble. Collisions between marbles are simple and

fast, the only downside is that the cloth object will never ñcollideò with itself. 26

Figure 5. The cloth object is represented by the triangle array. Each triangle is wrapped by a

bounding box. ... 27

Figure 6. Each triangle on the cloth object is indexed. ... 28

Figure 7. An example of a cloth mesh where each triangle has a unique index. 28

Figure 8. Pseudo code shows the recursive function which traverse the BVH and perform

collision detection. .. 29

Figure 9. The ray-traced algorithm could also be extended to testing collisions on object-object

and object-cloth. .. 30

Figure 10. The bounding sphere O(p) is not colliding with bounding sphere O(Q), which means

collision tests between particle P and all the triangles wrapped in bounding sphere O(Q) are

pruned. .. 31

Figure 11. Image explains how the purple sphere O(P) is tested collision with the cloth C. 32

Figure 12. Visualization of BSH according to the given cloth mesh in figure 10. 33

Figure 13 Cell n is marked as home to triangle T0, T1 and T2, and as phantom cell to T3 and T4.

... 34

Figure 14. Overview of modified sampling layout. .. 36

Figure 15. The circled place shows the artefact caused by the inconsistent normal. 37

Figure 16. On the left is an example of equilateral triangle layout. ... 38

Figure 17. Constraints to be sampled for each particle. On the left is the quad layout, where only

12 neighbor particles are sampled. On the right is the equilateral triangle layout, where 18

particles are sampled. .. 38

Figure 18. This triangulated layout makes spheres packed more tightly and can cover more area

of the grid with relatively less radius. ... 39

Figure 19. A 2D example describing how to determine the size the of the cellôs dimension. 40

Figure 20. Traverse the neighbor 5*5 cells to find collision. ... 41

9

Figure 21. A picture describing the array holding the data of previous figure. 42

Figure 22. The blue arrow indicates the workflow represented by each thread that controls the

vertex; the cell array is stored in the Global Memory which is accessible to all the threads. 43

Figure 23. Pseudocode of Ping-pong buffer. .. 44

Figure 24. The unnatural spike pointed by red arrow indicates vertex is flipping back and forth.

... 44

Figure 25. Illustration of Continuous Collision Detection .. 45

Figure 26. Pseudocode of Continuous Collision Detection. ... 46

Figure 27. Flow chart of the application ... 47

Figure 28. Pseudo code of the fast approach to handle self-collision ... 48

Figure 29. Output of the fast approach ... 49

Figure 30. Comparison of FPS against increasing number of vertices between running with the

fast approach and without ... 51

Figure 31. Comparison of Time (millisecond) spent in kernel function between running with fast

approach and without against increasing number of vertices. .. 51

Figure 32. FPS comparison between running with the fast approach self-collision algorithm and

brute force search. ... 53

Figure 33. Time spent in executing kernel function in millisecond between the fast approach

method and brute force search. ... 53

Figure 34. Number of hashing cells in million versus number of vertices. 55

Figure 35. Memory consumption in Megabytes versus number of vertices. 55

Figure 36. A 2D area which has been spatial hashed. Some grids hold a value, whereas others do

not. .. 57

Figure 37. The layout of the quadtree data structure given the circumstance in the previous

picture. .. 58

10

LIST OF ABBREVIATIONS

GPU Graphics Processing Unit

GM Global Memory

CM Constant Memory

RK4 Runge Kutta 4th Order

CCD Continuous Collision Detection

VF Vertex-face

EE Edge-edge

BVH Bounding Volume Hierarchy

AABB Axis-aligned Bounding Box

Vec3 Vector with three elements

11

ABSTRACT

The problem of self-collision detection has always been evasive in real time cloth

animation as it is very expensive to be implemented. While as rapid as todayôs evolution of

graphics hardware, self-collision handling of cloth is hardly to be seen in almost all kinds of

electronic graphics product.

This study describes a fast approach using GPU to process self-collision in cloth

animation without significant compromise in physical accuracy. The proposed fast approach is

built and works effectively on a modification of Mass Spring Model which is seen in a variety of

cloth simulation study. Instead of using hierarchical data structure which needs to be updated

each frame, this fast approach adopts a spatial hashing technique which virtually partitions the

space where the cloth object locates into small cubes and stores the information of the particles

being held in the cells with an integer array. With the data of the particles and the cells holding

information of the particles, self-collision detection can be processed in a very limited cost in

each thread launched in GPU regardless of the increase in the amount of particles. This method

is capable of visualizing self-collision detection and response in real time with limited cost in

accessing memory on the GPU.

The idea of the proposed fast approach is extremely straightforward, however, the

amount of memory which is needed to be consumed by this method is its weakness. Also, this

method sacrifices physical accuracy in exchange for the performance.

12

CHAPTER 1 PROBLEM AND PURPOSE

Introduction

3D electronic graphics products in present days are capable of rendering environments and

objects with high physical fidelity. However, it is impossible to completely restore the real-world

physical law with algorithms because the available computational power is limited. That is why it

is meaningful for the community of computer graphics to use all kinds of methods and algorithms

to approximate physical motion with an acceptable cost.

Throughout the problems of physical simulation that has been discussed for decades, a

typical one of them is cloth simulation.

Imagine a piece of skirt is moving in accordance with the behavior of a human, or a very

long ribbon held by a graceful gymnast, or large blanket being blew in windy weather. If the

external condition remains constant, in the case of the blanket the strength of wind remains still,

we will see points sampled from these moving objects can hardly be predicted and it will be a

chaotic curve. That is why cloth simulation, like any other problem of physical simulation, is

complex.

Fortunately, (Haumann & Parent, 1988) introduced a model which recognize the structure

of a piece of cloth as a huge grid of particles of known mass connecting one another by springs.

This understanding is called ñMass Spring Modelò and is most widely practiced not only in

academic but also industrial areas. One of the greatest advantages of this model is its compatibility

to be carried on GPU.

Only the generative method is far from enough, as in physical simulation there is another

unavoidable problem: collision. Two circumstances of collision are considered in cloth simulation:

cloth-object collision and self-collision (or cloth-cloth collision).

Cloth-object collision refers to the occasion when part of the cloth object interacts with other

rigid body. In the case of the Mass Spring Model where cloth objects are expressed by chained

particles and rigid bodies are defined by triangles, the collision could be handled starting from the

collision between particle and triangles. All that is left is, for each particle on the cloth, do the

collision detection between the current particle and all the triangles in the scene. This process is

no doubt time consuming since the number of triangles could be huge. We may integrate some

13

tree-like data structure to reduce the collision query and only check the collision between the

current particle and its nearest triangle so that the performance is improved.

Another way to solve the cloth-object collision is represented by (Macklin et al., 2020) who

expressed rigid body objects using SDF (signed distance field), an implicit method that returns the

result of whether a vertex is inside of a geometry. While this method is fast and convenient,

expressing a complicated high poly geometry using SDF is not an easy task.

Self-collision refers to the occasion when part of the cloth object interacts with itself, which

is mainly focused by this study. This problem is intriguing especially when it comes to many

particles. We may approach this problem using the same way as we deal with the cloth-object one.

Yet, it is still not efficient enough. Is there a more straightforward but meanwhile very fast method

to process self-collision detection in cloth simulation? The solution proposed by this study is trying

to answer this question.

Problem Statement

The problem addressed by this study is that it is very expensive to handle self-collision

detection of cloth animation in real time.

Suppose a cloth object generated by Mass Spring Model is paused in the middle of its

simulation, and we would like to know if part of this cloth is colliding with itself. A very brutal

way to answer the question is, for each triangle on the cloth, traverse all the other triangles and do

a triangle-triangle collision detection, which leads to an O(n2) computational complexity. It is a

nightmare if this process is to be done in real time. So, the problem of self-collision is also a

problem of optimization.

Many claimed that they solved the issue. For example, (Bridson et al., 2002) introduced a

method that output images of cloth simulation with satisfying self-collision detection. It also

considered the friction resulted from wrinkles of a cloth. However, it assumed a linear movement

of particles between timestep. The method compute collision between triangles and vertices with

a cubic equation. In the end, despite the comprehensiveness, it is not a good option to be

incorporated in real time. Another drawback is that because of the nature of his design, this method

only works on CPU, which is not compatible with the purpose of this study.

Another very popular solution is to integrate a hierarchical data structure, such as octree,

KD-tree, and BSP, to stratify the geometric structure of the cloth object and eliminate unnecessary

14

collision queries, which is a highly effective way to lower the time spent in collision detection. For

example, (He & Cheng, 2010) described a quad tree-based data structure to organize the cloth

geometry in its local tangent space. Also, studies carried by (Shapri & Bade, 2020) introduced a

data structure organized with spheres clusters, which is basically the same idea as the conventional

hierarchical ones. The difference is that in this study the particles in a particular tree node is

represented by an encapsuling sphere, whereas for the conventional ones the particles are held by

bounding boxes.

Despite the efficiency of hierarchical data structure to search for the nearest objects, the

problem is that constructing the data structure itself in each frame is expensive, especially when

there are many particles on a cloth object. Is it possible to search the nearest two particles on the

cloth and detect the collision without using hierarchical data structure?

Purpose Statement

The purpose of this study is to provide an additional feasible option to the problem of self-

collision handling in cloth simulation. Very likely the method proposed by this study is not perfect,

but it could be a reference which other researchers can take inspiration from and potentially help

the computer graphics community to achieve a best solution to this problem.

Research Question

1. How to design a fast approach to handle self-collision in cloth simulation without using

hierarchical data structure?

2. How much faster this fast approach is than no optimization is applied?

3. Are there any weaknesses of this method?

4. How much memory is consumed by this method?

5. Is this method compatible to the graphics pipeline?

Significance

The significance of this study is endorsed by the fact that physical effect including cloth-

simulations is widely seen in off-line rendered products, such as Computer Graphics animation

movies in which single frame takes hours to render, but is hardly found in real-time rendered digital

15

product like video games. The reason of this phenomenon is because, as explained in the Problem

Statement, cloth simulations with high fidelity are extremely expensive to process. So, it is

reasonable and economic to integrate physical simulation in a situation where performance is not

concerned. And this is one of the reasons why the difference of visual effect between real-time and

off-line rendered graphics is huge.

One way to improve the overall quality of real time output is to contain more physical effect,

such as cloth simulation. However, the computational resource in real time context is very limited.

That is why it is significant to visualize cloth simulation as well as its the collision detection in

real time.

Deliverable

An indispensable part of this paper is to implement the proposed fast approach into an

executable that includes but not limited to the visualization of a cloth object using mass spring

model, interface that controls the input parameters, integration of collision between cloth and static

object, integration of cloth-cloth collision, some background geometry, and most importantly, the

graph of performance test result.

The deliverable is not only developed to prove the feasibility of this fast approach, but also

a source of data collection. The significance of the proposed study lies in the readiness to be

implemented in the graphics pipeline.

Definition of Terms

Graphics Processing Unit (GPU) is, described by (Owens et al., 2008), ñan electronic circuit

which is designed for rapid parallel computing tasks and is therefore specialized at rendering

images as output to display devices. Parallelism is the future of computing. Future microprocessor

development efforts will continue to concentrate on adding cores rather than increasing single-

thread performanceò.

CUDA is defined by (Kirk & Hwu, 2020) as a ñparallel computing platform and

programming model that makes using a GPU for general purpose computing simple and elegant.

The developer still programs in the familiar C, C++, Fortran, or an ever-expanding list of supported

languages, and incorporates extensions of these languages in the form of a few basic keywordsò.

16

OpenGL is, described by (Vries, 2014), ñconsidered an API (an Application Programming

Interface) that provides us with a large set of functions that we can use to manipulate graphics and

images. However, OpenGL by itself is not an API, but merely a specification, developed and

maintained by the pertaining technological corporation that holds the Intelligence Property of

OpenGLò.

Mass Spring Model is a simplified physical model through which the cloth-like deformable

objects are constructed. It considers the cloth as a grid of particles connecting one another with

forces generated from spring constraints, which is the reason why this model is named. The

parameters this model takes are mass of particles, spring constants, rest length between particles,

gravity, time step, and a constant describing air resistance.

The Global Memory is physically located on the GPU, it is accessible from both host (CPU)

and device (GPU). The capacity of global memory is huge, yet such convenience does not mean

that the read and write speed to global memory is also high. It is visible to all kernel function and

is accessible as long as the application runs.

Verlet Integration is a modified form of Newtonôs equations of motion for numerical

integration. It is used in various environment of simulation and computer graphics to calculate

position of dynamic particles. In this study, the Verlet algorithm is used as the forward explicit

Euler integrator to locate the position of particles between time steps.

Continuous Collision Detection (CCD) is a way to compute the exact moment when two

moving objects collide with one another between two consecutive time steps. It is an advanced

version of discrete collision detection which can only detect collision at the moment of a frame

and does not detect collision in the interval between frames. To check the exact delta time of

collision between frames, CCD is necessary.

A vertex-face or edge-edge (VF/EE) pair refers to the 2 particular cases in the context of the

continuous collision detection. In practice, all cases of collision between two triangles are first

classified into these 2 cases before proceeding to the next stage to find the precise point of which

2 triangles collide with one another.

The Bounding Volume Hierarchical (BVH) data structure is commonly seen in most

physical simulation works to optimize the process of collision detection. It is typically used in

triangle-based collisions for the purpose of high precision. In BVH, each triangle in the scene is

17

represented by a bounding volume, usually AABB, and is held in the node of a tree-like data

structure that is generated out of a spatial partitioning method.

Assumptions

Specification of Experiment Environment

The performance of the algorithm varies depending on different specifications of hardware,

therefore it is important to specify the configuration environment under which the experimental

application is developed. In order to ensure the result of the experiment and the theoretical study

are logically coherent, the final output and the performance measurement will be conducted on the

system with the configurations described by Table 1.

Table 1. Specifications of the computer on which the method will be implemented.

Physical Model

In this study, the proposed fast approach assumes that the cloth is generated through the

Mass Spring model. The algorithm might not be compatible with other cloth generative ideas as

the theory is developed upon an assumption that cloth is considered as connecting mass particles.

 CPU Intel Core i7-7820HK

CPU Frequency 2.90GHz

RAM DDR4 @ 2400MHz

GPU NVIDIA GeForce GTX 1070

CUDA Driver Version 11.1/ 11.0

Global Memory Capacity 8192 MBytes

18

Delimitation

As the proposed study only focuses on the self-collision handling algorithm in cloth

simulation, which includes the cloth-cloth collision detection method and the response resulting

from the collision.

Cloth-object Collision

The collision handling method introduced in this study does not consider collisions between

cloth geometry and other polygon objects.

Friction

The self-collision handling introduced in this paper does not consider frictions as part of

collision response.

Limitation s

Downside of CUDA

One of the possible limitations observed from this study is CUDA, which is not part of the

graphics pipeline and could potentially hurt the performance. This limitation exists as a tradeoff to

the APIs provided by CUDA. To reach the best performance, the method should be integrated in

the graphics pipeline.

Limited Time Step

Since the geometric modeling of cloth object uses Verlet algorithm as the time step integrator,

in order to keep the cloth object stable in the run time of the experiment, the time step has to be

adjusted in a relatively trivial value, which could leave the cloth motion very slow on visual

perception. There are ways to make the time step larger, however it is not within the concern of

this study.

19

Evaluation of Visual Effects

Essentially, the fast approach addressed in this study aims to create a plausibly correct visual

effect of cloth-cloth collision other than physically precise, the question as to how real the

algorithm looks to humans cannot be answered in this study. This study only provides theoretical

and practical discussion to the executability of a solution to a specific problem, additional works

of human study are needed to evaluate the aesthetic and authenticity of this issue.

While this is a quantitative study trying to offer a solution to a specific problem, the visual

effects of the final output, however, is a qualitative one and is out of the scope of this study.

20

CHAPTER 2 REVIEW OF LITERATURE

The self-collision approach proposed in this study is developed upon the Mass Spring Model,

a generative method of deformable objects that is introduced by (Haumann & Parent, 1988). This

model was later optimized further by (Provot, 1995). There are other models recognized in the

area of cloth simulation, including the Geometry Model announced by (Kunii & Gtoda, 1990), and

(Weil 1986) and the Continuum-based Model by (Feynman, 1986) and (Volino et al., 1995).

The Mass Spring Model is most widely used in various research. Ever since (Provot, 1995),

one of the crucial problems that the cloth simulation community tried to solve is the time step.

Eberhardt et al. (1995) described an explicit integration method to solve the stiff differential

equation caused by the internal force, an intrinsic property of the Mass Spring Model, but the time

step has to be extremely small to keep the cloth system away from explosion.

Mass Spring Model

A very important concept to be addressed before elaborating self-collision handling is the

generative method of cloth objects. The fast approach that this study proposed is built on top of

what (Haumann & Parent, 1988) introduced, a fundamental simulating method of cloth modeling.

The mass spring model is represented by a grid of particles connecting each other with

springs. There are 3 types of constraints that determines the characteristics of the cloth object.

1. The structural constraints connect neighbor particles vertically and horizontally and is used

when compute the magnitude of extension and compression, it constructs the physical

frame of the cloth object.

2. The shear constraints connect particles diagonally and is used when compute the shearing

force, it is the constraint that avoids the cloth object from collapse into a line.

3. The Bend constraints connect every other particle vertically and horizontally and is used

when compute the bending force, it is the constraint that keep the cloth object from folding

like a piece of paper.

21

The structure of different types of constraints are shown in figure 1.

Figure 1. Overview of all types of constraints.

What the spring constraints are used for is to calculate inner force where Hookeôs Law is

applied. There are other forces to be considered, including gravity, wind, and damping. Damping

is a very import force that prevent the cloth waving back and forth perpetually, it is a force applied

constantly in the direction inverse to where the velocity is. As soon as the model is set up, the cloth

can be simulated incrementally according to Newtonôs Second Law of Motion. Overall, the mass

spring model could be expressed with the following equation.

Ὂ ὺ ὓ Ὣz Ὂ Ὂ Ὧὰ ὰ ὓ ὥz

Where: ñMò is mass of particle; ñgò is a vector representing gravity and is pointing to the

direction (0, -1, 0); ñFwindò is a vector for wind force; ñFdampò is a term that is always inverse to the

direction of velocity, this term is the key that prevents the cloth system from moving back and

forth perpetually; ñkò is the spring constant, it holds the property of stiffness of the cloth system;

ñlcurrentò is the current length between the current particle and one of its neighbor particle; ñlrestò is

the initial length between current particle and one of its neighbor particle when the cloth is in a

balanced state. The term with the ñ×ò is the term of the inner force, which means the greater the

distance of which the particle is away from itôs initial position, the greater the force trying to drag

it back to where it was. Also, the greater the ñkò is, the less the cloth tends to yield to outer force.

22

Figure 2 shows comparison of typical mass spring model with different ñkò.

Figure 2. On the left is a cloth with high spring constant, on the right is the one

with low spring constant.

Large Timestep

Baraff & Witkin (1998) brought an implicit integration method for the purpose of a larger

time step, despite its solidity, it is not a solution to be performed real time. The method requires a

convergence of a matrix inversion algorithm, and because such large time steps are taken and the

correlation between error and the time step is linear, this approach is not a good option for the

proposed fast approach in this study.

Another unavoidable problem in cloth animation is to deal with the self-collision. Provot

(1997) introduced a method to quantify the deformation of a cloth system with a cone apex angle

which generated from the normal of triangle patches. While this is a method featured with physical

accuracy, the triangle-triangle collision algorithm provided in this paper takes significantly

additional resources if to be implemented on GPU. This method requires dynamic thread

controlling every frame since the number of collisions to be detected is constantly changing in run

time.

Integration of Data Structure

Many studies were seen using spatial data structures to construct hierarchy nodes to represent

the cloth geometry so that unnecessary collision queries are pruned. Bridson et al. (2002) used Axe

Aligned Bounding Box (AABB) based tree for collision searching. But the downside is that each

23

frame the tree data structure must be rebuilt and is expensive. Others like (Lv et al., 2007) proposed

to use a bounding sphere-based tree data structure to prune unnecessary collision query, however

this method assumes the length of the constraints could be clamped within a certain extent, which

is an operation that cannot be implemented in the context of multithreading. He & Cheng (2010)

introduced a quadtree data structure separating the local uv space of the cloth, which could roughly

filter out a possible collision. But the methodôs approach to the collision query works similar to

what (Provot, 1997) proposed.

Past Related Works

The problem of self-collision detection and response has always been a major obstacle in the

section of cloth simulation. Many have introduced valuable solutions.

GPU-Based Incremental Collision Handling

The GPU-based incremental collision handling method, proposed by (Tang et al., 2018), has

shown robust and fast output. This method mainly involves two novel techniques.

One is to use spatial hashing to do incremental CCD. The idea of this method is based on a

fact that only a small number of vertices will be influenced by response forces. The solution keeps

track of the deformed vertices using spatial hashing, and then detects collision with high-level and

low-level GPU culling algorithms. The second one is the GPU-based non-linear impact zone solver.

It is used to compute a penetration status according to impact zone and is parallelized on GPU.

The output of the implementation from this technique proved reliable physical accuracy.

Meanwhile, the non-linear impact zone solver allows the cloth object to run in a large time step,

which leads to verisimilar cloth motion.

The work of (Tang et al., 2018) consists of 4 parts: integration, collision detection, and

collision response computation. The simulation process is initialized in a state with no penetration

on the cloth object. For each time step, the simulation process goes through the following 4 stages

shown in figure below.

24

Figure 3. Process of incremental collision handling.

The proximity checking takes care of finding potential VF/EE constraints. Time Integration

takes care of implicit time integrator with internal/external forces and proximity constraints.

Penetration Detection is a part that keeps track of penetration using CCD. Impact Zone Solver: a

reiterative process on GPU to resolve all the potential collision until a new penetration-free state

is reached.

To do CCD between each overlapping VF/EE pair, (Tang et al., 2018) adopted the high-

level culling technique with BVH structure to roughly get the potential overlapping VF/EE pairs.

Next, another low-level culling method takes in the rough collision information and processes all

the VF/EE pairs with reliable collision tests. The output of such a process is valuable for references.

However, the cost is high as it is run reiteratively for multiple loops until the rough BVH returns

false.

To improve the performance, Tang et al., introduced the incremental CCD algorithm that

uses the information between two consecutive iterations to reduce the number of loops.

The collision response applied in this study is like the one from (Bridson et al., 2001). Once

a VF/EE pair collision is detected, a repulsive force will be generated based on the proximity

distance between the pair and added to the stiffness matrix. The proximity in this method is

integrated into the time integration. One of the advantages of this technique is that it can also get

static/kinetic friction force out of the relative tangential velocity between a VF/EE pair.

At the end of each iterative collision detection stage, the process has to know whether the

cloth object is in penetration-free state. To do this, a non-linear impact zone solver is presented for

this job.

25

Overall, the theoretical time complexity of this process can be deducted as follows: For each

time step, the simulation process would need an extensive matrix to do the implicit integration

which is O(1) since the GPU is optimized in doing linear algebra. The high-level culling would

need O(log n), where n is the number of triangles of the cloth mesh. Tang et al., (2018) didnôt

disclose too much detail of how they handle the incremental CCD, but if all VF/EE pairs are

distributed with their own thread, the time can be limited to O(1). The final impact zone solver

would take O(1) since it is run parallelized for every vertex in the impact zone.

According to (Tang, et al., 2018), the final performance of the implementation is averagely

run from 0.5 to 1.0 second per frame, which is approximately 2-3 FPS.

The theoretical time complexity of the algorithm is limited. However, the process runs the

penetration detection and impact zone solver reiteratively before proceeding to the next frame even

with the help of incremental CCD, which is very time consuming. Also, in the part of the

incremental CCD and the impact zone solver, GPU resources will be diversified greatly in different

circumstances.

Virtual Marble Technique

The idea of how (Wojciechowski & Galaj, 2016) solve the problem of self-collision in cloth

simulation is that they treat each vertex on the cloth mesh as a virtual marble, see figure below.

Instead of doing collision detection between vertices and cloth mesh, they reduce the problem to

the collision detection between marbles. If the distance between two vertices is less than twice the

length of the marble radius, a collision is detected, and the corresponding vertices are backed up

to the point where there is no collision.

26

Figure 4. Each vertex is set up with a virtual marble. Collisions

between marbles are simple and fast, the only downside is that the

cloth object will never ñcollideò with itself.

The time complexity that this solution has is O(n) with parallel threading on GPU, since each

marble on the cloth object still must traverse through all the others to detect a collision. This

explains why the performance drops linearly with increases on the number of vertices. Their

implementation can hold an acceptable frame rate when the number of vertices is less than 3600.

Bounding Volume Hierarchy

The Bounding Volume Hierarchy (BVH) adopted by (Liu et al., 1998) is featured with a

binary tree data structure that holds the information of all the bounding volumes which contain the

triangles of the cloth mesh. They used Axis Aligned Bounding Box (AABB), shown in figure

below, as the bounding volume of triangles, and the AABBs are involved in the collision detection

and response. Let the vertices of triangle Ti at time t denotated Vij(t), where j = 1, 2, 3. The AABB

shall be described by two points Min(t) and Max(t), which can be easily obtained from the

equations below.

ὓὭὲὸȢὼ ÍÉÎ ὺ ὸȢὼȟὺ ὸȢὼȟὺ ὸȢὼ

27

ὓὭὲὸȢώ ÍÉÎ ὺ ὸȢώȟὺ ὸȢώȟὺ ὸȢώ

ὓὭὲὸȢᾀ ÍÉÎ ὺ ὸȢᾀȟὺ ὸȢᾀȟὺ ὸȢᾀ

ὓὥὼὸȢὼ ÍÁØ ὺ ὸȢὼȟὺ ὸȢὼȟὺ ὸȢὼ

ὓὥὼὸȢώ ÍÁØ ὺ ὸȢώȟὺ ὸȢώȟὺ ὸȢώ

ὓὥὼὸȢᾀ ÍÁØ ὺ ὸȢᾀȟὺ ὸȢᾀȟὺ ὸȢᾀ

Figure 5. The cloth object is represented by the triangle array. Each

triangle is wrapped by a bounding box.

The BVH method transfers the problem of collision detection between triangles to the

problem of collision detection between bounding boxes. Two bounding boxes will be considered

as overlapping if and only if their corresponding intervals overlap on the projections to all the 3

axes. Check collisions between bounding boxes are fast, however, it is still time consuming even

run in multi-threading as each bounding box would have to go through all the others to know the

collision status.

To improve the run time cost, (Liu et al., 1998) used a binary tree to contain all the bounding

boxes, this method recursively partitions the cloth mesh into half until there is only 1 triangle in

the leaf node. This process can be illustrated by figure below.

28

Figure 6. Each triangle on the cloth object is indexed.

Figure 7. An example of a cloth mesh where each triangle has a

unique index.

The binary tree above shows the result of the BVH method in the previous figure. The root

node holds the bounding box of the whole cloth object, the level 2 nodes hold the bounding boxes

for half of the cloth. Each lower-level child node stores the bounding box of half of the object

represented by its parent.

29

With the hierarchical data structure, thereôs no need to traverse all the bounding boxes to

know the collision status. To do a collision query for a bounding box A, simply search through the

tree. The process is shown in the pseudo code.

Test_Collision(Bounding_Box A, Root_Node){

 If Root_Node is null, return true;

 End if ;

 If A overlaps with Root_Node->Bounding_Box

Test A overlaps RootNode->children->Bounding_Box;

 Else return false;

 End if ;

}

Figure 8. Pseudo code shows the recursive function which traverse

the BVH and perform collision detection.

This method has proved to have great improvement on the performance, in the final output

the average total time in one simulation step could take down to 2.02 seconds per frame with 51*51

vertices on the cloth.

Since the information of the bounding box has to be updated every frame, the BVH tree

would have to be constantly re-constructed, which takes O(log n) where n is the number of

triangles. After the GPU has all the information of the bounding box, it would launch a thread for

every triangle and need another O(log n) to search through the BVH to do collision detection. In

terms of the space consumption, this process takes O(n) to store all the data of BVH.

Ray-traced Collision Detection

The way with which (Lehericey et al., 2015) approach to the problem of self-collision

handling is to adopt the ray-tracing function which is provided by GPU as part of its hardware

optimization.

The idea is to cast two rays out of each vertex of the cloth mesh with one of them going the

direction of normal and the other going the opposite. Say we would like to test whether the

potential collision pair (C1, C2) is collision true, we cast a ray in the direction of normal to see if

it hits C2. If it hits C2 and the distance between C1 and the hit point is less than twice the cloth

thickness, the test (C1 -> C2) returns true. However, only one test is not enough. The test of pair

30

(C1, C2) is decomposed into two tests: (C1 -> C2) and (C2 -> C1). To obtain the collision status

between C1 and C2, both counterparts cast rays respectively from C1 to C2 and from C2 to C1.

The reason is that performing only one of the tests could return false results, it is important to

combine both test results to reach the final collision status. The process is illustrated in figure

below.

Figure 9. The ray-traced algorithm could also be extended to

testing collisions on object-object and object-cloth.

Just like (Liu et al., 1998), Lehericey et al. (2015) adopted BVH as the accelerative structure

to lower the cost.

The performance of the implementation of the solution has proved capable to be run in real

time. With a scene of 10,000 vertices of static objects and up to 17,000 vertices of multiple cloth

objects, the collision-detection takes an average of 4.3 millisecond. However, the actual FPS of

the implementation was not disclosed.

This solution would typically require O(log n) for each thread allocated to perform ray-traced

testing because of BVH, and an O(n) of space to store all the BVH data.

Bounding Sphere Hierarchy

Lv et al. (2007) approached the self-collision detection for cloth simulation with a new idea

of BVH, they introduced bounding spheres instead of AABB. In addition, the way with which

bounding spheres are used in the hierarchical data structure is different from the one with AABB.

Shapri & Bade (2010) later used a very similar technique.

31

To make the cloth simulation system compatible with BSH, they integrate the cloth

generation with a constrained particle-based model, which sets an upper limit to the length of the

stretch and shear constraints between particles. With the length between particles in the mass

spring model is clamped, the distance between each two neighboring particles must not be longer

than Lmax. Such restriction very much conforms to the physical rules since in reality a cloth material

is only ductile within a certain range. However, the Mass Spring Model theoretically assumes that

the cloth object can be infinitely extended if the force is big enough.

Figure 10. The bounding sphere O(p) is not colliding with

bounding sphere O(Q), which means collision tests between

particle P and all the triangles wrapped in bounding sphere O(Q)

are pruned.

The constrained particle distance is the prerequisite of (Lv et al., 2007)ôs BSH. The strict

constraints on the stretch and shear connection means that it is possible to put a sphere with a

constant radius to hold any two given particles on the cloth mesh. Naturally, we may contain all

the particles on the cloth object with a single sphere O(Q), where the centroid is a chosen vertex

and the radius is c*Lmax, see figure 10. This feature can be exploited to prune unwanted collision

tests. Meanwhile, for each particle P on the cloth object, it is attached with a smallest sphere O(P)

that represents the moving track of P, where the centroid is the position of P(old) from last time

step and the radius is the distance between P(old) and P(new).

32

The method of (Lv et al., 2007) is, as shown in figure 10, that they test collision between

O(P) and O(Q) first. If false, then the polygon represented by O(Q) is pruned. If true, test precise

collision between P and the triangles held in O(Q). The image below shows the whole process of

BSH.

Figure 11. Image explains how the purple sphere O(P) is tested

collision with the cloth C.

In the image above, first collision (O(P), s(Q)) is true. Then test collisions between O(P) and

children of s(Q), and s(1), s(2) and s(3) are pruned. Next, test O(p) and children of s(4). Finally,

perform particle-triangle test between P and the triangles in the s(4).s(1).

As shown in below, To maintain the BSH, each frame we would need O(log4 n) to construct

the tree. And another O (log 4 n) is required to search through the tree to test every vertex. In terms

of memory, BSH costs O(n) where n is the number of triangles.

33

Figure 12. Visualization of BSH according to the given cloth mesh in figure 10.

Spatial Hashing Combined with Bounding Sphere

Another technique that is seen to handle the self-collision problem is the one introduced by

(Pabst et al., 2010). In order to gain great performance, their primary task is to design an algorithm

that is highly scalable to GPU. So that the implementation is able to achieve real time with multiple

GPU connected.

Similar to the design of (Liu et al., 1998), Pabst et al., (2010) focused on collision detection

between triangles. For each candidate triangle collision pair, they need to distinguish the precise

type of orientation out of 6 VF and 9 EE pairs.

Before handling triangle pairs, they adopt the Spatial Hashing method to prune unwanted

triangle pairs. The way Spatial Hashing works is to separate the space into cells, either uniform or

hierarchical, so that target objects fit into single cells. To locate the cell holding the target, each

one is assigned a unique hash value given its position. Since every cell can now be easily accessed,

the collision detection is reduced to test overlapping triangles with the same cell hash value. To

determine which cell does a specific triangle belong to, check the position of the triangleôs centroid.

The triangle is held by the cell that has the centroid even if the triangle extends to multiple cells.

Pabst et al., (2010) set up a rule that the cell holding the triangleôs centroid is marked as the

triangleôs home cell, and the surrounding 28 cells are marked as the phantom cell if the bounding

sphere of triangle overlaps with them. For the rest of the occasion the cells are marked as invalid.

See figure below.

34

Figure 13 Cell n is marked as home to triangle T0, T1 and T2, and

as phantom cell to T3 and T4.

The design of this method is to invoke kernel function for each potential collision pair. To

identify each collision to its corresponding thread, they impose an order of sequence in which

triangles pairs are tested. Take figure 13 as an example, the order to test collision between triangle

pairs is seen in table 2.

Table 2. A lookup table to ensure all the triangle pairs are

tested in a constant sequential order.

35

The solution presented by (Pabst et al., 2010) proved to have high performance. Since they

allocate 1 thread for every collision, the theoretical time complexity of this method is O(1). Also,

searching through the lookup table to identify each collision pair takes O(log n), where n is the

number of collisions. As for the spatial hashing and the hierarchy, it needs O(n) to hold all the data,

where n is the number of cells.

While this method is fast and highly scalable, it could cause 1 problem, which is that the

simulation process would lead to large deviations of thread number. From time to time there will

be worst cases where resources reserved from GPU could differ from 0 to hundred thousands. In

real time graphics, a predictable and steady cost is usually prioritized.

With all the previous works scrutinized, this study describes a straightforward fast approach

where no hierarchical data structure is to be applied. It is designed to be implemented on GPU and

the computational complexity resulting from this method on each thread and each frame is very

limited. But nothing comes without a price, the disadvantage of this method will be discussed in

the limitation.

36

CHAPTER 3 METHODOLOGY

A Modification to Mass Spring Model

To maximize the validity of the self-collision method to be described later, this study

proposed to modify the typical quad layout in the conventional mass spring model into an

equilateral triangulated structure. The idea of the spring constraints remains intact. Figure below

shows the layout of modified structure.

Figure 14. Overview of modified sampling layout.

Aligning the particle using this layout immediately solves an issue that is often seen in cloth

simulation, which is the inconsistence between different direction of folding in cloth. The layout

of typical Mass Spring Model usually leads to conspicuous artifacts if the cloth folds in a diagonal

37

direction when the resolution of the cloth is relatively low. This is a problem not out of the Mass

Particle Model itself but of the way with which the vertices are connected as triangles.

Figure below shows the appearance of artifacts. The area circled on the right shows the

artifact caused by the cloth folding in the direction of yellow arrow shown on the left. But if cloth

folds in the direction of blue arrow, artifact is hardly to be seen. This inconsistence comes from

the asymmetric quad layout, shown on the left in the figure below. This is because the cloth object

is folding in the diagonal direction of the yellow arrow in the left image. If the cloth folds otherwise

with the blue arrow, artefacts will not be seen.

Figure 15. The circled place shows the artefact caused by the

inconsistent normal.

This issue can be solved by infinitely increase the resolution of the grid, but this is very

uneconomic. However, with the modification of an equilateral triangle layout, shown in figure

below, connections would not be packed into an unsmoothed geometry no matter to which

direction the grid folds. Normal will be more consistent regardless of the folding direction. On the

right is the actual output of this layout.

38

Figure 16. On the left is an example of equilateral triangle layout.

However, the downside of this layout is that, for each particle, the number of constraints that

are needed to be sampled is 18, whereas in the conventional layout it is only 12. As shown in

Figure below. Still, compare to the benefit the system obtained from it, this change is considered

a good tradeoff.

Figure 17. Constraints to be sampled for each particle. On the left

is the quad layout, where only 12 neighbor particles are sampled.

On the right is the equilateral triangle layout, where 18 particles

are sampled.

39

The Fast Approach of Cloth-cloth Collision

Virtual Sphere

To compute the self-collision with a low cost, this study proposed a similar technique of

(Wojciechowski & Galaj, 2016) such that the mass particles are treated as spheres. The radius of

spheres equals to half of the Rest Length of constraints, an input parameter indicating the length

between particles when the cloth is in the balanced state. By doing this, the cloth object is covered

by the spheres as illustrated in the figure below. We can see that the question as to how to handle

the cloth-cloth collision is transferred to how to handle the sphere-sphere collision.

Figure 18. This triangulated layout makes spheres packed more tightly

and can cover more area of the grid with relatively less radius.

Spatial Hashing

To check the collision between two spheres is cheap. But it is unwise to traverse all the

others since that will result an O(n) computational complexity in each frame for each thread, which

is a level that cannot be accepted even for GPU.

As for the optimization of sphere-sphere collision detection, this study proposes to partition

the space of where the cloth object exists into cells. This idea is inspired by the marble technique

adopted by (Pabst et al., 2010). The difference is that the size of the cell in this study is set to an

extend that each time and each cell can only hold 1 center of a sphere, shown in figure below. The

