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ABSTRACT

The problem of sel€ollision detection has always been evasive in real time cloth
animation as it is very expensive to be implement¢diless r api d as todayods ev
graphics hardwareselfcollision handling of cloth is hardly to be seen in altvadskinds of
electronicgraphicsproduct.

This study describes a fast approach using GPU to proces®Hkisibnin cloth
animationwithout significant compromise in physical accuratlye proposed fast approach is
built and works effectively oa modification of Mass Spring Model which is seen in a variety of
cloth simulation studyinstead of using hierarchical data structure which needs to be updated
each frame, this fast approaatiopts a spatial hashing technique whitctually partitions the
spa@ where the cloth object locatedo smallcubes and stores the information of the particles
being held in the cellwith an integer array. With the data of the particles and thehualiing
information of theparticles, seltcollision detection can bgrocessed in gery limited cost in
each threathunched in GPUWegardless of thmcrease in the amouof particles.This method
is capable of visualizingelf-collision detection and response in real time Wittited costin
accessing memory on the GPU

The idea of the proposed fast approach is extrestedyghtforward however, the
amount of memory which is needed to be consumed by this method is its weAkswhis

method sacrifices physical accuracy in exchange for the performance.
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CHAPTER 1 PROBLEM AND PURPOSE

Introduction

3D electronic graphics products in peasdays are capable of rendgrenvironmens and
objectswith high physical fidelityHowever, it is impossible to completely restore ribaworld
physical lawwith algorithmsbecause the available computational power is limilédt iswhy it
is meaimngful for the community of computer graphics to use all kinds of methods and algorithms
to approximatephysical motiorwith an acceptable cost

Throughout the problems of physical simulation that has been discissddcades, a
typical one of them is oth simulation.

Imagine a piece of skirt is moving in accordamgth the behavior of a human, or a very
long ribbon held by a graceful gymnast,large blanket being blew in windy weathérthe
external condition remains constantthe case of the blanket the strength of wind remains still,
we will seepointssampledfrom these moving objectsan hardly be predicted artdwill be a
chaoticcurve That is why cloth simulation, like any other problem of physical simulation, is
complex.

Fortunately, (Haumann & Parent, 1988)roduceda model which recognize the structure
of a piece of cloth as a huge grid of particles of known mass connecting one another by springs.
This understanding is called A Madnotdpyin ng Mo
academidut alsondustrial areas. One of the greatest advastaighis model ists compatibility
to be carried on GPU.

Only the generative method is far from enough, as in physical simutagos isanother
unavoidable problem: collisiowo circumstances of collisioareconsidered in cloth simulation
cloth-object collision and seifollision (or clothcloth collision).

Cloth-object collision refers to the occasion when part of the cloth object inten#ttisther
rigid body.In the case of the Mass Spring Model where cloth objects are expresskditgd
particles and rigid bodies are defined by triangles, the collision could be hatattgagfrom the
collision between particle and trianglesl that is left is, for each particle on the cloth, do the
collision detection etween the current particle and all the triangles in the scene. This process is

no doubt time consumingincethe number of triangles could be huge. We may integrate some
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treelike data structure to reduce the collision query and only check the collision between the
currentparticle and its nearest triangle that the performance is improved

Another way to solve the clotbbject collision is represented by (Macklin et 2020)who
expressed rigid body objects using SDF (signed distance field), an implicit method that returns the
result of whether a vertex is inside of a geomethile this method is fast and convenient,
expressing a complicated high poly geometry using &hot an easy task.

Self-collision refers to the occasion when part of the cloth object interacts with vibath
is mainly focused by this studyhis problemis intriguing especially when it comes to many
particles. We may approach this problerimgshe same way as we deal with the clotijectone
Yet, it is still not efficient enough. Is there a more straightforward but meanwhile very fast method
to process selfollision detection in cloth simulation? The solution proposed by this sttgyng

to answer this question

Problem Statement

The problem addressed by this study is that it is very expensive to hanetellsstin
detection of cloth animation in real time.

Suppose a cloth object generated by Mass Spring Model is pausednndtiie of its
simulation, and we would like to know if part of this cloth is colliding with itself. A very brutal
way to answer the question is, for each triangle on the cloth, traverse all the other triangles and do
a triangletriangle collision detectiqgrwhich leads to a®(n?) computational complexityit is a
nightmare if this process is to be done in real ti®@.the problem of selfollision is also a
problem of optimization.

Many claimed that they solved the iss&er example, (Bridson et al., @®) introduced a
method that output images of cloth simulation with satisfying-c#lision detectionlt also
considered the friction resulted from wrinkles of a clétbwever, it assumed a linear movement
of particles between timestep. The method aast@gollision betweeltriangles and vertices with
a cubic equation. In the end, despite the comprehensiveness, it is not a good option to be
incorporated in real timénother drawback is that because of the nature of his design, this method
only works onCPU, which is not compatible with the purpose of this study.

Another very popular solution is to integrate a hierarchical data strusuch as octree,

KD-tree, and BSRp stratify the geometric structure of the cloth object and eliminate unnecessary
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cdlision queries, which is a highly effective way to lower the time spent in collision deteBio
example, (He & Cheng, 2010) described a quradbaseddata structure to organize the cloth
geometry in its local tangent spaddso, studiesarried by Shapri & Bade, 2020ntroduced a
data structure organized with spheres clusters, which is basically the same idea as the conventional
hierarchical ones. The difference is that in this study the particles in a particular tree node is
representa by an encapsuling sphere, whereas for the conventional ones the particles are held by
bounding boxes.

Despite the efficiencyf hierarchical data structute search fothe nearesobjecs, the
problem is thatonstructingthe datastructureitself in each frame is expensive, especially when
there aremanyparticles on a cloth objedts it possibleto search the nearest two particles on the

cloth and detect the collision without using hierarchical data structure?

Purpose Statement

The purpose dthis study is to provide an additional feasible option to the problem ef self
collision handling in cloth simulation. Very likely the methmdposed by this studyg not perfect,
butit could be a reference which other researchargake inspiration frmm and potentially help

the computer graphics community to achieve a best solution to this problem.

Research Question

1. How to desigra fast approach to handle sedllision in cloth simulatiowithout using
hierarchical data structure?

How muchfastrthis fast approaciks than no optimization is appliéd

Are there anyweaknessesf this method?

How much memory is consumed by this method?

a k~ 0N

Is this method compatible to the graphics pipeline?

Significance

The significance of this study is endorsed by the fact that physical eftédaetling cloth-
simulationsis widely seen in offine rendered products, such as Computer Graphics animation

moviesin which single frame takes hours to rendbert ishardlyfound in reattime renderedigital
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productlike video gamesThe reason of this phenomenon is because, as explained in the Problem
Statement, cloth simulationsith high fidelity are extremely expensive to process. So, it is
reasonable and economicitdegrae physical simulatioin a situation where performance is not
concernedAnd this isone of the reasomnghy thedifference ofvisual effect between reéime and
off-line rendeed graphics is huge.

One way to improve the overall quality of real time otitptio contain more physical effect,
such as cloth simulation. However, the computational resource in real time context is very limited.
That iswhy it is significantto visualize cloth simulation as well as its the collision deteation

real time

Deliverable

An indispensable part of this paper is to implement the proposed fast approach into an
executable that includes but not limited to the visualization @bt object using mass spring
model, interface that controls the input parameters, iatiegrof collision between cloth and static
object, integration of clotieloth collision, some background geometry, and most importantly, the
graph of performance test result.

The deliverable is not only developed to prove the feasibility of this faspagp but also
a source of data collection. The significance of the proposed study lies in the readiness to be

implemented in the graphics pipeline.

Definition of Terms

Graphics Processing Unit (GPU)s , descri bed by (Owenraitet al
which is designed for rapid parallel computing tasks and is therefore specialized at rendering
images as output to display devices. Parallelism is the future of computing. Future microprocessor
development efforts will continue to concentrate oniragld¢ores rather than increasing single
t hread performanceo.

CUDA is defined by Kirk & Hwu, 2 02 0) as a fnAparall el C 0 Mf
programming model that makes using a GPU for general purpose computing simple and elegant.
The developer still prograsrin the familiar C, C++, Fortran, or an exsxpanding list of supported

|l anguages, and i ncorporates extensions of the
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OpenGL is, described by Vr i e s, 2014) , Afconsi dered an AP
Interface) that provides us with a large set of functions that we can use to manipulate graphics and
images. However, OpenGL by itself is not an API, but merely a specification, developed and
maintained by the pertaining technological corporation that holds the Intelligence Property of
OpenGLO.

Mass Spring Model is a simplified physical model through which the-tiketdeformable
objects are constructed. It considers the cloth as a grid télearconnecting one another with
forces generated from spring constraints, which is the reason why this model is named. The
parameters this model takes are mass of particles, spring constants, rest length between particles,
gravity, time step, and a cdast describing air resistance.

The Global Memory is physically located the GPU, it is accessible from both h{SPU)
and devicg GPU). The capacity of global memory is huge, yet such convenience does not mean
that the read and write speed to global memory is also high. It is visiblek&rra#l functionand
is accessible as long as the application runs.

Verlet Integration is anodified formof Ne wt on 6 s e gq u a foi rumesicalo f mo t
integration It is used in various environment of simulation and computer graphics to calculate
position of dynamic particledn this study, the Verlet algorithm is usedthe forward explicit
Euler integrator to locate the position of particles between time steps.

ContinuousCollision Detection (CCD)s a way tocompute the exaghomentwhen two
moving objects collide with one anothieetween two consecutive time stefiss an advanced
versionof discrete collision detection which can only detect collision attbmentof a frame
and does not detect collision in the interval between frames. To check the exact delta time of
collision between frame&CD is necessary.

A vertexface or edgedge VF/EE) pair refers to the 2 particular cases in the context of the
continuous collision detection. loractice all cases of collision between two triangles are first
classified into these 2 cases before proceeding to the next stage to faneldike point of which
2 triangles collide with one another.

The Bounding Volume Hierarchical (BVH) data structure is commonly seen in most
physical simulation works to optimize the process of collision detection. It is typically used in

trianglebased cdisions for the purpose of high precision. In BVH, each triangle in the scene is
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represented by a bounding volume, usually AABB, and is held in the node oflkdreata

structure that is generated out of a spatial partitioning method.

Assumptions

Specfication of Experiment Environment

The performance of the algorithm varies depending on different specificatibasdefare
therefore it is important to specify the configuration environment under which the experimental
application is developed. In ordir ensure the result of the experiment and the theoretical study
are logically coherent, the final output and the performance measurement will be conducted on the

system with the configurations describedTaplel.

Tablel. Spediications of the computer on which the method will be implemented

CPU Intel Core i77820HK

CPU Frequency 2.90GHz

RAM DDR4 @ 2400MHz

GPU NVIDIA GeForce GTX 107(

CUDA Driver Version |11.1/11.0

Global Memory Capacit] 8192 MBytes

Physical Model

In this study, the proposed fast approach assumes that the cloth is generated through the
Mass Spring model. The algorithm might not be compatible with other géstarative ideas as

the theory is developed upon an assumption that cloth is considered as connecting mass particles.
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Delimitation

As the proposed study only focuses on the-aallision handling algorithm in cloth
simulation, which includes the cletiioth collision detection method and the response resulting

from the collision.

Cloth-object Collision

The collision handling method introduced in this study does not consider collisions between

cloth geometry and other polygon objects.

Friction

The selfcollision handling introduced in this paper does not consider frictions as part of

collision response.

Limitation s

Downside of CUDA

One of the possible limitations observed from this study is CUDA, which is not part of the
graphics pipeline and coufbtentially hurt the performance. This limitation exists as a tradeoff to
the APIs provided by CUDATo reach the best performance, the method should be integrated in
the graphics pipeline.

Limited Time Step

Since the geometric modeling of cloth objectsigerlet algorithm as the time step integrator,
in order to keep the cloth object stable in the run time of the experiment, the time step has to be
adjusted in a relatively trivial value, which could leave the chotition very slow on visual
perceptionThere are ways to make the time step larger, however it is not within the concern of

this study.
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Evaluation of Visual Effects

Essentially, the fast approach addressed in this study aims to create a plausibly correct visual
effect of clothcloth collision oher than physicallyprecise the question as to how real the
algorithm looks to humans cannot be answered in this study. This study only provides theoretical
and practical discussion to the executability of a solution to a specific problem, additionsil work
of human study are needed to evaluate the aesthetic and authenticity of this issue.

While this is a quantitativestudy trying to offer a solution to a specific problehe visual

effects of the final output, however, is a qualitatmeandis out of the scope of this study
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CHAPTER 2 REVIEW OF LITERATURE

The selfcollision approach proposed in this study is developed upon the Mass Spring Model,
a generative methaof deformable objects that is introduced by (Haumann & Parent, 1988). This
model was later optimized further by (Provot, 1995). There are other models recognized in the
area of cloth simulation, including the Geometry Model announced by (Kunii & Gtoaid), End
(Weil 1986) and the Continuwimased Model by (Feynman, 1986) and (Volino et al., 1995).

The Mass Spring Model is most widely used in various research. Ever since (Provot, 1995),
one of the crucial problems that the cloth simulation communitgl toesolve is the time step.
Eberhardt et al(1995) described an explicit integration method to solve the stiff differential
eqguation caused by the internal force, an intrinsic property of the Mass Spring Model, but the time

step has to be extremely smallkeep the cloth system away from explosion.

Mass Spring Model

A very important concept to be addressed before elaboratingatkdion handling is the
generative method of cloth objects. The fast approach that this study proposed is built on top of
what (Haumann & Parent, 1988) introduced, a fundamental simulating method of cloth modeling.

The mass spring model is represented by a grid of particles connecting each other with

springs. There are 3 types of constraints that determines the characteristics of the cloth object.

1. The structural constraints connect neighbor particles vertaatlyjhorizontally and is used
when compute the magnitude of extension and compression, it constructs the physical
frame of the cloth object.

2. The shear constraints connect particles diagonally and is used when compute the shearing
force, it is the consaint that avoids the cloth object from collapse into a line.

3. The Bend constraints connect every other particle vertically and horizontally and is used
when compute the bending force, it is the constraint that keep the cloth object from folding

like a pece of paper.
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The structure of different types of constraints are shown in figure 1.

Structural Shear Bend All

Figurel. Overview of all types of constraints.

What the spring constraints are usedsfor i
applied. There are other forces to be considered, including gravity, wind, and damping. Damping
is a very import force that prevent the cloth waving back and forth perpetually, it is a force applied
constantly in the direction inverse to where the vigfas. As soon as the model is set up, the cloth
can be simulated incrementally according to N

spring model could be expressed with the following equation.

O 0 0zQ O O Qa a 0DzZw
Wher e: AMO i s mass of parti cdneispoiitggpthe s a v
direction (0/1,0) whe i S a vect Ofamgd Oirs wa ntderfrortcregt fiFs al
direction of velocity this tem is the key that prevents the cloth system from moving back and
forth perpetually fiko i s the spring constant, it hol ds
Adren® i S the current |l ength bet weenr ttih@idbeusfilent

the initial length between current particle and one of its neighbor particle when the cloth is in a

balanced statd. he t er mxowiitsh tthhee tier m of the inner for
distance of which the particleisawyr om it 6s i ni ti al position, th
it back towhereitwaAl so, the greater the Ako is, the | e
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Figure 2 shows comparison of typical mass spr

Figure2. On the left is a cloth with high spring constant, on the right is the one
with low spring constant.

Large Timestep

Baraff & Witkin (1998) brought an implicit integration method for the purpose of a larger
time step, dest® its solidity, it is not a solution to be performed real time. The method requires a
convergence of a matrix inversion algorithm, and because such large time steps are taken and the
correlation between error and the time step is linear, this approach ésgood option for the
proposed fast approach in this study.

Another unavoidable problem in cloth animation is to deal with thecsdi§ion. Provot
(1997) introduced a method to quantify the deformation of a cloth system with a cone apex angle
whichgenerated from the normal of triangle patches. While this is a method featured with physical
accuracy, the trianglgiangle collision algorithm provided in this paper takes significantly
additional resources if to be implemented on GPU. This method esqdiynamic thread
controlling every frame since the number of collisions to be detected is constantly changing in run
time.
Integration of Data Structure

Many studies were seen using spatial data structures to construct hierarchy nodes to represent
the cloth geometry so that unnecessary collision querigsamed Bridson et al. (2002) used Axe
Aligned Bounding Box (AABB) based tree for collision searghiBut the downside is that each
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frame the tre€ata structurenust be rebuilt and is expensive. Others like (Lv et al., 2007) proposed

to use a bounding sphebased tree data structure to prune unnecessary collision query, however

this method assumes tlength of the constraints could be clamped within a certain extent, which

is an operation that cannot be implemented in the context of multithreading. He & Cheng (2010)
introduced a quadtree data structure separating the local uv space of the clothpuldicbughly
filter out a possible collision. But the meth

what (Provot, 1997) proposed.

PastRelatedWorks

The problem of sel€ollision detection and response has always been a major obstacle in the

section of cloth simulatioMany hae introducel valuablesolutions.

GPU-Based Incremental Collision Handling

The GPUbased incremental collision handling method, proposed by (Tang et al., 2018), has
shown robust and fast output. This method mamigplves two novel techniques.

One is to use spatial hashing to do incremental CCD. The idea of this method is based on a
fact that only a small number of vertices will be influenced by response forces. The solution keeps
track of the deformedertices using spatial hashing, and then detects collision witHéwghand
low-level GPU culling algorithms. The second one is the @BEkd nodinear impact zone solver.

It is used to compute a penetration status according to impact zone andétizetain GPU.

The output of the implementation from this technique proved reliable physical accuracy.
Meanwhile, the notfinear impact zone solver allows the cloth object to run in a large time step,
which leads to verisimilar cloth motion.

The work of Tang et al., 2018) consists of 4 parts: integration, collision detection, and
collision response computation. The simulation process is initialized in a state with no penetration
on the cloth object. For each time step, the simulation process goes ttivedglfowing 4 stages

shown in figurebelow.
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If penetration true, reiterate
impact zone solver until
certain threshold

l

F’roxmlty I Tlme_ : Penetrqtlon : Impact Zone
Checking Integration Detection Solver
If no penetration, proceed to next frame

Figure3. Process of incremental collision handling.

The proximity checking takes care of finding potential VF/EE constraints. Time Integration
takes care of implicit time integratavith internal/external forces and proximity constraints
Penetration Detectiois a part thakees track of penetratiomsing CCD.Impact Zone Solver: a
reiterative process on GPU to resolve all the potential anllisntil a new penetratieinee state
is reached.

To do CCD between each overlapping VF/EE pair, (Tang et al., 2018) adopted the high
level culling technique with BVH structure to roughly get the potential overlapping VF/EE pairs.
Next, another lowevel alling method takes in the rough collision information and processes all
the VF/EE pairs with reliable collision tests. The output of such a prisceslsiable for references
However,the costis high as it isrun reiteratively for multiple loops untilite rough BVH returns
false.

To improve the performance, Tang et al., introduced the incremental CCD algorithm that
uses the information between two consecutive iterations to reduce the number of loops.

The collision response applied in this studiks the one from (Bridson et al., 2001). Once
a VF/EE pair collision is detected, a repulsive force will be generated based on the proximity
distance between the pair and added to the stiffness matrix. The proximity in this method is
integrated into the time fegration. One of the advantages of this technique is that it can also get
static/kinetic friction force out of the relative tangential velocity between a VF/EE pair.

At the end of each iterative collision detection stage, the process has to know wheether t
cloth object is in penetratieinee state. To do this, a ndinear impact zone solver is presented for

this job.

24



Overall, the theoretical time complexity of this process can be deducted as follows: For each
time step, the simulation process would naadextensive matrix to do the implicit integration
which is O(1) since the GPU is optimized in doing linear algebra. Theléwgh culling would
need O(log n), where n is the number of triatl
disclose too mch detail of how they handle the incremental CCD, but if all VF/EE pairs are
distributed with their own thread, the time can be limited to O(1). The final impact zone solver
would take O(1) since it isun parallelized for every vertex in the impact zone.

According to (Tang, et al., 2018), the final performance of the implementation is averagely
runfrom 0.5 to 1.0 second per frame, which is approximat&yPS.

The theoretical time complexity of the akithm is limited. However, the process sithe
penetration detection and impact zone solver reiteratively before proceeding to the next frame even
with the help of incremental CCDwhich is very time consumingAlso, in the part of the
incremental CCD ahthe impact zone solver, GPU resources will be diversified greatly in different

circumstances.

Virtual Marble Technique

The idea of how (Wojciechowski & Galaj, 2016) solve the problem ofcadlision in cloth
simulation is that they treat each vertexthe cloth mesh as a virtual marbéee figuredoelow.
Instead of doing collision detection between vertices and cloth mesh, they reduce the problem to
the collision detection between marbles. If the distance between two vertices is less than twice the
length of the marble radius, a collision is detected, and the corresponding vertices are backed up

to the point wheréhere isno collision.
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Figure4. Each vertex is set up with a virtual marble. Collisions
between marbles astmple and fast, the only downside is that the

cloth object wi

never
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The time complexity that this solution has is O(n) with parallel threading on GPU, since each

marble on the cloth object still must traverse through all the ttoedetect a collision. This

explains why the performance drops linearly with increases on the number of vertices. Their

implementation can hold an acceptable frame rate when the number of vertices is less than 3600.

Bounding Volume Hierarchy

The BoundingVolume Hierarchy (BVH) adopted by (Liu et al., 1998) is featured with a
binary tree data structure that holds the information of all the bounding volumes which contain the

triangles of the cloth mesh. They used Axis Aligned Bounding Box (AABB), showigunef

below,as the bounding volume of trianglasidthe AABBs are involved in the collision detection

and response. Let the vertices of triangle Ti at tidenbtated/ij(t), where j =1, 2, 3. The AABB

shall be described by two points Min(t) and Max(t), which can be easily obtained from the

equatiors below.
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Figure5. The cloth object is represented by the triangle array. Each
triangle is wrapped by a bounding box.

The BVH method transfers the problem of collision detection between triangles to the
problem of collision detection between boinglboxes. Two bounding boxes will be considered
as overlapping if and only if their corresponding intervals overlap on the projections to all the 3
axes. Check collisions between bounding boxes are fast, however, it is still time consuming even

run in muti-threading as each bounding box would have to go through all the others to know the

collision status.

To improve the run time cost, (Liu et al., 1998) used a binary tree to contain all the bounding
boxes, this method recursively partitions the cloth me&hhalf untilthere isonly 1 triangle in

the leaf node. This process can be illustrated by figal@w.
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Figure6. Each triangle on the cloth object is indexed.

Root
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Figure7. An example of a cloth mesh where each triangle has a
unique index.

The binary tre@aboveshows the result of the BVH methadthe previous figureThe root
node holds the bounding box of the whole cloth object, the level 2 nodes hold the bdaxaing
for half of the cloth. Each lowdevel child node stores the bounding box of half of the object

represented by its parent.
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With the hierarchical data structur e, t her

know the collision status. To dccallision query for a bounding box A, simply search through the

tree. The process is shown in the pseudo code.

Test_CollisionE , Root_Nodg{
If Root_Nodaes null, returntrue
Endif;

If A overlaps withRoot_Node>
TestA overlapsRootNode>children>
Else returrfalse
Endif;
}

Figure8. Pseudo code shows the recursive function which traverse
the BVH andperform collision detection.

This method has proved to have great improvement on the performance, in the final output
the average total time in one simulation step could take down to 2.02 seconds per frame with 51*51
vertices on the cloth.

Since the inforration of the bounding box has to be updated every frame, the BVH tree
would have to be constantly-oenstructed, which takes O(log n) where n is the number of
triangles. After the GPU has all the information of the bounding box, it would launch a tbread f
every triangle and need another O(log n) to search through the BVH to do collision detection. In

terms of the space consumption, this process takes O(n) to store all the data of BVH.

Ray-traced Collision Detection

The way with which (Lehericey et al.025) approach to the problem of setfilision
handling is to adopt the rayacing function which is provided by GPU as part of its hardware
optimization.

The idea is to cast two rays out of each vertex of the cloth mesh with one of them going the
direction of normal and the other going the opposite. Say we would like to test whether the
potential collision pair (C1, C2) is collision true, we cast a ray in the direction of normal to see if
it hits C2. If it hits C2 and the distance between C1 and thaohit is less than twice the cloth

thickness, the test (G C2) returns true. However, only one test is not enough. The test of pair
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(C1, C2) is decomposed into two tests: (€1C2) and (C2> C1). To obtain the collision status
between C1 and C2, botlbunterparts cast rays respectively from C1 to C2 and from C2 to C1.
The reason is that performing only one of the tests could return false results, it is important to
combine both test results to reach the final collision status. The process is illustrageoe

below.

Figure9. The raytraced algorithm could also be extended to
testing collisions on objedbject and objeetloth.

Just like (Liu et al., 1998), Lehericey et al. (2015) adopted BVH aacttederative structure
to lower the cost.

The performance of the implementation of the solution has proved capable to be run in real
time. With a scene of 10,000 vertices of static objects and up to 17,000 vertices of multiple cloth
objects, the collisiometection takes an average of 4.3 millisecond. However, the actual FPS of
the implementation was not disclosed.

This solution would typically require O(log n) for each thread allocated to perfortracgd
testing because of BVH, and an O(n) of spaceéaesall the BVH data.

Bounding Sphere Hierarchy

Lv et al. (2007) approached the setillision detection for cloth simulation with a new idea
of BVH, they introduced bounding spheres instead of AABB. In addition, the way with which
bounding spheres areassin the hierarchical data structure is different from the one with AABB.
Shapri & Bade (2010) later used a very similar technique.
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To make the cloth simulation system compatible with BSH, they integrate the cloth
generation with a constrained partitlased model, which sets an upper limit to the length of the
stretch and shear constraints between particles. With the length between particles in the mass
spring model is clamped, the distance between each two neighboring particles must not be longer
than Lmax. Such restriction very much confosto the physical rules sin@erealitya cloth material
is only ductile within a certain range. However, the Mass Spring Model theoretically assumes that

the cloth object can be infinitely extended if the force is big enough.

“ Cloth C' N
Olp

* L 4 ®

N ® 4

Figure10. The boundingphere O(p) is not colliding with
bounding sphere O(Q), which means collision tests between
particle P and all the triangles wrapped in bounding sphere O(Q)

are pruned.

The constrained particle distance itaictt he pi
constraints on the stretch and shear connection means that it is possible to put a sphere with a
constant radius to hold any two given particles on the cloth mesh. Naturally, we may contain all
the particles on the cloth object with a single sphel@)Owhere the centroid is a chosen vertex
and the radius is c*hax, see figurelO. This feature can be exploited to prune unwanted collision
tests. Meanwhile, for each particle P on the cloth object, it is attached with a smallest sphere O(P)
that represats the moving track of P, where the centroid is the position of P(old) from last time

step and the radius is the distance between P(old) and P(new).
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The method of (Lv et al., 2007) is, as shown in figl@ethat they test collision between
O(P) and O(Q) first. If false, then the polygon represented by O(Q) is pruned. If true, test precise
collision between P and the triangles held in O(Q). The irbag@vshows the whole process of
BSH.

0 O(p)
s(1) (D
p1 P2 p3 pd Q) p5
® [ ] [ ] o N\
p6 p7. p8 P9 p10
o o o ] o
s(Q)
1
P11 @ P %
p16, p1
< ®
s(3)
p21 p22

Figurell Image explains how the purple sphere O(P) is tested
collision with the cloth C.

In the image bove first collision (O(P), s(Q)) is true. Then test collisions between O(P) and
children of s(Q), and s(1), s(2) and s(3) prened. Next, test O(p) and children of s(4). Finally,
perform particletriangle test between P and the triangles in the s(4).s(1).

As shown irbelow, To maintain the BSH, each frame we would need O(log4 n) to construct
the tree. And another O (log 4 nyéxjuired to search through the tree to test every vertex. In terms

of memory, BSH costs O(n) where n is the number of triangles.
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Figurel2. Visualization of BSH according to the given cloth mesh in figure 10.

Spatial Hashing Combined with Bounding Sphere

Another technique that is seen to handle thecalision problem is the one introduced by
(Pabst et al., 2010). In order to gain great performance, their primary task is to design an algorithm
that is highly scalaklto GPU. So that the implementation is able to achieve real time with multiple
GPU connected.

Similar to the design of (Liu et al., 1998), Pabst et al., (2010) focused on collision detection
between triangles. For each candidate triangle collision paly,rieed to distinguish the precise
type of orientation out of 6 VF and 9 EE pairs.

Before handling triangle pairs, they adopt the Spatial Hashing method to prune unwanted
triangle pairs. The way Spatial Hashing works is to separate the space intathelisjregform or
hierarchical, so that target objects fit into single cells. To locate the cell holding the target, each
one is assigned a unique hash value given its position. Since every cell can now be easily accessed,
the collision detection is reduceal test overlapping triangles with the same cell hash value. To
determine which cell does a specific triangle
The triangle is held by the cell that has the centroid even if the triangle extendkipbe cells.

Pabst et al., (2010) set wup a rule that the
trianglebéds home cell, and the surrounding 28
sphere of triangle overlaps with them. Hoe test of the occasion the cells are marked as invalid.

See figurebelow.
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Figurel3 Cell n is marked as home to triangle TO, T1 and T2, and
as phantom cell to T3 and T4.

The design of this method is to invoke kernel function for each potential collision pair. To

identify each collision to its corresponding thread, they impose an order of sequence in which

triangles pairs are tested. Take figiBas an example, the ordertest collision between triangle

pairs is seen in tab

Table2. A lookup table to ensure all the triangle pairs are

tested in a constant sequential order.

Potential | Triangle ID | Triangle ID

Collision
0 TO Tl
1 TO T2
2 T1 T2
3 TO T3
4 TO T4
5 T1 T3
6 T1 T4
7 T2 T3
8 T2 T4
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The solution presented by (Pabst et al., 2010) proved tohigivgoerformance. Since they
allocate 1 thread for every collision, the theoretical time complexity of this method is O(1). Also,
searching through the lookup table to identify each collision pair takes O(log n), where n is the
number of collisions. As fahe spatial hashing and the hierarchy, it needs O(n) to hold all the data,
where n is the number of cells.

While this method is fast and highly scalable, it could cause 1 problem, which is that the
simulation process would lead to large deviations ofthrumber. From time to time there will
be worst cases where resources reserved from GPU could differ from 0 to hundred thousands. In
real time graphics, a predictable and steady cost is usually prioritized.

With all the previous works scrutinized, thisdy describes a straightforward fast approach
where no hierarchical data structure is to be applied. It is designed to be implemented on GPU and
the computational complexity resulting from this method on each thread and each frame is very
limited. But notling comes without a price, the disadvantage of this method will be discussed in

the limitation.
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CHAPTER 3 METHODOLOGY

A Modification to Mass Spring Model

To maximize the validity of theself-collision method to be described latehis study
proposed tomodify the typical quad layout in the conventional mass spring modefo an
equilateraltriangulated structurdhe idea of the spring constraints remains intact. Figalew

shows the layout of modified structure.
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Figurel4. Overview ofmodified samplinglayout
Aligning the particle using this layout immediately solves an issue that is often seen in cloth

simulation, which is the inconsistence between different direction of folding in cloth. The layout
of typical Mass Spring Model usually leads to conspicuoufaets if the cloth folds in a diagonal



direction when the resolution of the cloth is relatively low. This is a problem not out of the Mass
Particle Model itself but of the way with which the vertices are connected as triangles.

Figure below shows the apmarance of artifactsThe area circled on the right shows the
artifact caused by the cloth folding in the direction of yellow arrow shown on the left. But if cloth
folds in the direction of blue arrow, artifact is hardly to be seen. This inconsistencs frome
the asymmetric quad layquhown on the left in the figure belowhis is because the cloth object
is folding in the diagonal direction of the yellow arrow in the left image. If the cloth folds otherwise
with the blue arrow, artefacts will not bees.

o000

R

Figurel5. The circled place shows the artefact caused by the
inconsistent normal.

This issue can be solved by infinitely increase the resolution of the grid, but this is very
uneconomic. However, with the modification afi equilateral triangle layout, shown in figure
below, connections would not be packed into an unsmoothed geometry no matter to which
direction the grid foldsNormal will be more consistent regardless of the folding direction. On the
right is theactual output of this layout.
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Figurel6. On the left is a example of equilateral triangle layout

However, the downside of this layout is that, for each particle, the number of constraints that
are needed to be sampled is tBereas in the conventional layout it is only 12. As shown in
Figurebelow: Still, compare to the benefit the system obtained from it, this change is considered
a good tradeoft.

& :—I—: ® ...—\./—...
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Figurel7. Constraints to be sampled feach particle. On the left

is the quad layoutyhere only 12 neighbor particles are sampled.

On the right is the equilateral triangle laypowhere 18 particles
are sampled.
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The Fast Approach of Clothcloth Collision

Virtual Sphere

To compute the sekfollision with a low cost, this study proposadsimilar technique of
(Wojciechowski & Galaj, 201683uch that thenass particleare treatecs spheres. The radius of
spheres equals to half of the Rest Length of constraints, an input parameter indicagngtthe |
between particles when the cloth is in the balanced state. By doing this, the cloth object is covered
by the spheres akustrated inthe figurebelow. We can see that the question as to how to handle

the clothcloth collision is transferred to how handle the spheisphere collision.

s VAV o VAV 1, VA 1, VAV o
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Figurel8. This triangulated layout makes spheres packed trgirdy
and can cover more area of the grid with relatively less radius.

Spatial Hashing

To check the collision between two spés is cheap. But it is unwise to traverse all the
others since that will result an O(n) computational complexity in each frame for each thread, which
is a level that cannot be accepted even for GPU.

As for the optimization of sphesphere collision detection, this stupyoposedo partition
the space of where the cloth object exists into cEliss idea is inspired by thearbletechnique
adopted by(Pabst et al., 2010The difference is thaht size of the celln this studyis set to an

extend that each time and each cell can only hold 1 center of a,sgitwsm in figurdoelow. The
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